电动汽车 (EV) 有潜力降低交通运输部门的碳排放,并为实现全球净零排放目标做出贡献。然而,为了实现可持续的脱碳,电动汽车的电网到车辆 (G2V) 运行所需的电力应来自无碳或低碳发电源。虽然人们已经广泛探索了可再生能源 (RES) 在电动汽车 G2V 过程中的采用,但热电联产 (CHP) 技术仍未得到充分研究。因此,本文部署了协调的天然气和燃料电池热电联产技术以及 RES 和电池储能系统 (BESS),以促进电动汽车的 G2V 和车辆到电网 (V2G) 运行。虽然 BESS 支持 V2G 运行并储存来自 CHP 和 RES 的多余电力,但 CHP 的副产品热量可用于家庭和工业设施的供暖。此外,为了最大限度地提高环境和经济效益,CHP 技术采用混合电热负荷策略设计,使系统能够在遵循电负荷策略和遵循热负荷策略之间自主切换。使用三个不同的案例研究 (CS) 测试了所提出的优化问题,以在随机框架内最小化微电网 (MG) 的运营成本和二氧化碳 (CO 2 ) 排放量,同时考虑 RES 发电、负荷消耗和 EV 充电/放电周期的行为模式作为不确定参数。第一个 CS 仅使用 CHP 技术测试所提出的算法。其次,使用 CHP 技术和 RES 检查该算法。最后,添加 BESS 以支持和分析电动汽车的 V2G 运行对 MG 的影响。此外,还研究了生命周期评估以分析分布式发电的二氧化碳排放量。结果显示,第一、第二和第三个 CS 的运营成本分别降低了 32.22%、44.49% 和 47.20%。同时,各相应 CS 的 CO 2 排放量分别下降了 29.13%、47.13% 和 47.90%。这些结果证明了将热电联产与可再生能源相结合以促进 G2V 和 V2G 运营以实现运输部门脱碳的经济和环境效益。
混合可再生能源系统 (HRES) 可以利用可变可再生能源的互补性,更好地匹配电力需求负荷曲线。应谨慎确定 HRES 的大小,以便更好地匹配需求负荷,既不能过大也不能过小。本研究介绍了使用广义简化梯度法优化 HRES 组件的大小。案例研究旨在展示偏远农村地区的 HRES。探讨了独立和并网模式的案例。研究了可靠性从 100% 到 70% 的独立系统。研究了有偿和无偿向电网供电的并网系统,以探索 HRES 在不同价格制度下的可行性。使用 HOMER 软件验证所使用的方法,方法是将其结果与所考虑案例的 HOMER 结果进行比较。独立系统中可再生能源份额越高,组件生命周期每个阶段的就业需求就越大。此外,与传统系统相比,HRES 系统对环境的负面影响要小得多。可以得出结论,独立系统在创造就业机会和碳排放方面表现更好。相比之下,电网连接系统在可靠性和经济性方面表现更好。
热能储存很可能是可持续、安全且负担得起的能源系统不可或缺的一部分,该系统在匹配供需方面面临着越来越大的挑战。技术经济研究已经探索了热能储存部署的潜力,但能源系统的转型也受到一系列参与者的活动和决策的影响。我们从一项关于英国热能储存的案头调查中收集了新的实证证据,并通过社会技术分析探讨了热储存在能源转型中的地位和作用。我们发现,该技术在英国仍然是一种相对小众的方法,受制于复杂的国家和地方政策和治理安排,以及受益于显著锁定效应的稳定化石燃料供热制度的影响。虽然我们承认,专注于单一技术系统来实现所需的变革性能源系统变革存在局限性,但我们发现热储存既能带来地方效益,也能带来国家效益,以支持系统平衡并缓解季节性需求高峰,同时还可能带来其他效益。商业模式中的有前景的创新有助于实现热储存部署,这些创新也更广泛地适用于低碳供热。
6.1. 仔细检查................................................................................- 25 - 6.2. 首次设置(重要!)...............................................................- 25 - 6.3. 调试..............................................................................................- 28 - 6.4. 菜单..............................................................................................- 29 - 7. 故障排除...............................................................................................- 44 - 8. 技术数据...............................................................................................- 51 - 9. 质量保证...............................................................................................- 53 -
Sumitomo SHI FW 将领导 LAES 业务,运用我们的技术开发、工程和全球项目交付能力,帮助我们的客户实现能源转型和净零排放。LAES 利用一种免费资源——空气,提供可靠、灵活和可持续的能源存储解决方案。LAES 是目前市场上唯一一种可提供多 GWh 存储、不受规模或地理限制且可扩展且零排放的 LDES 技术。LAES 超级灵活、耐用、具有成本竞争力,并且不存在某些传统能源存储技术中观察到的容量衰减问题。LAES 系统的放电功率通常在 25MW 到 100MW 以上,而存储容量通常在 200MWh 到 2..5GWh 之间。由于充电功率、放电功率和存储容量是分离的,LAES 非常适合长时间存储和批量能量转移应用。