在本文中,我们提出了RSTAB,这是视频稳定框架的新型框架,该框架通过音量渲染整合了3D多帧融合。与传统方法背道而驰,我们引入了一个3D多框架透视图,以进行稳定的图像,从而解决了全框架生成的挑战,同时保存结构。我们的RSTAB框架的核心在于S Tabilized R Endering(SR),该卷渲染模块,在3D空间中融合了多帧信息。具体来说,SR涉及通过投影从多个帧中旋转的特征和颜色,将它们融合到描述符中以呈现稳定的图像。然而,扭曲的信息的精度取决于降低的准确性,这是受染色体区域显着影响的因素。为了响应,我们介绍了a daptive r ay r ange(arr)模块以整合深度先验,并自适应地定义了投影过程的采样范围。在方面上,我们提出了以光流的光流限制的限制,以进行精确的颜色,以实现精确的颜色。多亏了这三个模块,我们的rstab示例表现出了卓越的性能,与以前的视野(FOV),图像质量和视频稳定性相比,各种数据集的稳定器相比。
近年来,由于存储容量的增加、网络架构的改进以及数码相机(尤其是手机)的普及,视频在许多应用中变得越来越流行。如今,人们可以通过电视和互联网观看大量视频。观众可以选择的视频数量如此之多,以至于人类不可能从所有视频中找出感兴趣的视频。观众用来缩小选择范围的一种方法是寻找特定类别或类型的视频。由于需要分类的视频数量巨大,因此人们已经开始研究自动对视频进行分类、视频分类和分析。因此,有必要有一个系统来为某个视频或不同的视频生成相关标签
抗生素的滥用使用给这种类型的药物带来了抗药性的威胁,使其被认为是普遍的疾病对公共卫生的威胁。由于每种微生物都有避免迫在眉睫的风险的防御策略,因此这些药物针对的微生物将找到捍卫自己免受行动的方法。抗生素耐药性可以伴随着对重金属的耐药性,这进一步使这种令人震惊的情况恶化。检查哪种基因与这两种类型的抗性有关,对于旨在减轻引起的负面影响和开发新药物的研究非常重要。本研究调查了来自瓜纳巴拉湾(RJ)和巴西湖Airo湖(AM)沉积物中对抗生素和金属的微生物耐药性谱。重金属和抗生素耐药性在两个位置的共存都强调了抗性共选择的重要性,这可能导致多药耐药细菌。重金属在环境中的持久性及其对微生物群落施加选择性压力的能力代表了对公共卫生的重大威胁。因此,实施有效的重金属污染控制措施对于减轻与抗菌耐药性相关的风险至关重要。palavras-chaves:抵抗,重金属,抗生素,细菌,airo湖
指示:在巡回演出的每个站点,使用下面的“ bank”一词匹配新词汇单词。在每个站点结束时,反思您对我们的调查问题的了解。
根据 2016/679 号条例 (EU) 第 13 和 14 条规定的视频监控信息,Sicilbanca Credito Cooperativo Italiano - Società Cooperativa(注册办事处位于卡尔塔尼塞塔 Via Francesco Crispi 25,CF 01438930859 PI 02529020220,卡尔塔尼塞塔公司注册号为 70559)(以下简称“公司”或“所有者”)希望通过本文件(“信息”)向您告知处理您的个人数据的目的和方法,以及 2016/679 号条例 (EU) 关于保护自然人、处理个人数据及其自由流通(“GDPR”)赋予您的权利。 1 与视频监控相关的处理目的 数据控制者可能会处理与场所内进行的视频录制相关的您的个人数据。通过视频监控手段获取的个人数据的处理旨在保护客户、公司人员和访问这些数据的个人的安全,以及保护公司资产免遭可能的侵犯、盗窃、抢劫或破坏行为。使用摄像机的法律基础是合法利益。摄像机的放置位置将拍摄范围限制在可能受到公司组织外部个人的非法或其他有害行为风险的区域。在某些情况下,所检测到的图像会被记录并存储一段时间,以达到上述目的,并且在任何情况下,存储时间不超过一周,除非担保人关于保护个人数据的适用规定允许更长的期限,或者可能需要满足司法机关或司法警察对正在进行的调查活动的具体要求。在预期的保留期结束时,记录的图像将从相关的电子、计算机或磁性媒体中删除。检测和记录是在不拦截通信或对话的情况下进行的,并且不会将图像与可以识别相关方的其他元素交织在一起。进入数据控制者的场所需要强制对相关方进行视频记录。反对执行拍摄将导致公司无法跟进您的合同前/合同中的要求。 2 视频录像传输的对象(接收者) 录制的图像存储在电子或磁性媒体上,只能由公司专门指定的人员和外部公司进行处理,作为数据控制者,他们合作维护系统并开展私人监视活动: - Zabut investigazioni di Gulotta Matteo,总部位于 Sambuca di Sicilia via Mulè c.le Salvato n.6。 - 2858 Security srl,注册办事处位于 Misterbianco (ct) via Carlo Marx 57。 - Secur Point srl,注册办事处位于 S. Cataldo (cl), via E. Tricomi 11。 - OSTI di Vincenzo Uricolo,注册办事处位于 S. Margherita di Belice (ag),partment 156 lot 8。根据司法机关或司法警察的命令,图像还会在数据控制者结构之外进行传达和传播。 3 利益相关方的权利 关于本通知中描述的处理,作为利益相关方,您可以
简介:慢性心力衰竭导致许多患者住院,尤其是那些年老且不遵守治疗 1 的患者。这种住院通常可以通过前几周体重增加 2 和外周水肿增加来预测。对于不遵守每日体重记录的患者,我们假设从零依从性全自动远程监控解决方案中收集可靠的数据以评估外周水肿将减少住院并改善护理。
现有的文本视频检索解决方案本质上是侧重于最大程度地提高条件可能性的模型,即P(候选人|查询)。虽然很简单,但这种事实上的范式却忽略了基本的数据分布p(查询),这使得识别出分布数据的挑战。为了解决这一限制,我们从生成观点创造性地解决了此任务,并将文本和视频之间的相关性建模为其关节概率P(候选人,查询)。这是通过基于扩散的文本视频检索框架(扩散-RET)来完成的,该框架将检索任务建模为从噪声中产生关节分布的过程。在训练过程中,从发电和犯罪的角度优化了Diffusionret,其发电机通过生成损失优化,并且具有对比度损失的训练的特征提取器。以这种方式,diffusionret巧妙地杠杆化了生成和歧视方法的优势。在五个常用的文本检索基准测试中进行了广泛的实验,包括MSRVTT,LSMDC,MSVD,ActivityNet字幕和DIDEMO,并具有出色的性能,证明了我们方法的效果。更加谨慎,没有任何修改,diffusionret甚至在外域检索设置中表现良好。我们认为这项工作带来了对相关领域的基本见解。代码可从https://github.com/jpthu17/diffusionret获得。
IEEE 是一个非盈利组织,是世界上最大的专业技术组织,致力于推动技术进步,造福人类。© 版权所有 2023 IEEE - 保留所有权利。使用本网站即表示您同意条款和条件。
当前的视频异常检测(VAD)方法本质上仅限于封闭设置的设置,并且可能在开放世界应用程序中遇到困难,在培训期间,测试数据中可能存在异常类别。最近的一些研究试图解决更现实的开放式VAD,该研究旨在解散视为异常和正常视频的看不见异常。但是,尽管这种能力对于构建更明智的视频监视系统至关重要,但这种设置着重于预测框架异常得分,没有识别异常类别的能力。本文进一步迈出了一步,并探讨了开放词汇视频异常检测(OVVAD),我们的目的是利用预训练的大型模型来检测和cate-可见和看不见的异常。为此,我们提出了一个模型,该模型将OVVAD分解为两个相互构成的任务 - 类不足的检测和特定于类的分类 - 并共同优化了这两个任务。特别是,我们设计了一个语义知识注入模块,以从大语言模型中引入语义知识以进行检测任务,并设计一种新型的异常合成模块,以在大型视觉生成模型的帮助下生成伪异常视频,以实现分类任务。这些语义知识和综合异常大大扩展了我们模型在检测和分类各种可见和看不见的异常方面的能力。对三个广泛使用的基准测试的实验实验实现了我们的模型在OVVAD任务上实现了最新的性能。
