[A] D. A. Aguilera博士,N。Tanchoux博士Charles Gerhardt CNRS-ENSCM-UM 8,Rue Ecole Normale,34296法国Montpellier,法国电子邮件:nathalie.tanchoux@enscm.fr https:/scm.fr https:/ https:/ Aguilera,M。Fochi教授,L。Bernardi教授工业化学系“ Toso Montanari”和Instm Ru Bologna Alma Mater Studiorum - Bologna V. Risorgimento 4,40136 Bologna,意大利Bologna,意大利电子邮件https://www.unibo.it/sitoweb/luca.bernardi2/en摘要:Alginate,Chitin(壳聚糖的前体)和角叉菜胶是自然多糖,该多糖来自海洋源,可用于几乎无限的数量。与其他天然多糖相反(即纤维素),其单体具有官能团(胺,羧酸盐,硫酸盐)。这些官能团可用于锚定催化物种,甚至作为催化活性单元。在这种微型审查中,讨论了海洋多糖在不对称催化中的利用。示例包括:i)与手性催化剂的组合,导致异质催化系统,ii)将生物聚合物用作手性元素的利用 - 用作手性配体或器官催化剂。审查的作品提出了这些可再生材料的创新和非常规利用,不仅为油基聚合物提供了有用的替代品,而且还提供了不对称催化领域的不可预见和令人着迷的机会。
后生物学,代表生物学家族的最新成员,是由于乳酸细菌(LAB)在de Man,Rogosa和Sharpe(MRS)中的发酵而产生的代谢产物,其中包括蛋白质,糖和矿物质。生物后的成分包括外多糖(EPS),短链脂肪酸(SCFA),细菌素,抗氧化剂和代谢酶。几项研究表明,生物学后具有多种特性,例如抗菌,免疫调节,抗氧化剂,抗炎,抗肥胖,抗糖尿病和抗肿瘤特性。天然多糖是指从包括藻类,植物,动物和微生物在内的生物生物中获得的多糖。多糖是分支或线性大分子,由几种主要和一些次要的单糖组成,包括葡萄糖,果糖,果糖,甘露糖,阿拉伯糖,半乳糖糖,半乳糖酸酯,半乳糖醛酸,葡萄糖糖胺,半乳糖胺或衍生物。类似于生物后,多糖也表现出抗炎,抗菌,抗肿瘤,抗病毒,免疫调节和抗氧化特性。尽管由于缺乏特定的酶,人体不能直接消化多糖,但可以通过肠道遗留细菌(包括但不限于实验室)消化它们。最近的研究表明,大量的非淀粉多糖,例如藻酸盐,富藻酸酯,壳聚糖,角叉菜胶和瓜尔胶可以降解为低分子量的寡糖寡糖,这反过来又可以为人类健康提供健康益处。这些新发现激发了我们提出基于多糖后的后生物学,也称为糖培养基及其潜在应用。我们建议可以通过益生菌发酵多糖,随后的细菌去除将提高其生产的代谢产物的安全性,包括寡糖,二糖,单糖和衍生物。这些基于多糖的后生物学可能模仿体外多糖的代谢,从而扩大了生物后的应用。诸如Akkermansia Muciniphila和其他细菌等非刺激药也可以用于糖生物生产,从而为人类健康提供了新的应用。
大象脚山药(Oncophallus oncophyllus)是印度尼西亚最广泛种植的农产品之一。它具有无数的好处,尤其是作为糖尿病患者的功能性食物。Roselle(芙蓉Sabdariffa L.)是一种富含多酚和花青素的开花草药,具有抗氧化剂和抗糖尿病潜力。因此,这项研究的目的是创建适合糖尿病患者的功能性食品。在这项研究中,从山药和罗斯尔开发了一种速溶果冻粉的功能性食品。葡萄糖素提取物是通过浸出从山药粉中获得的,使用傅立叶转换红外(FTIR)分光光度计(定性)测试并确定含量。开发了具有不同量的葡萄糖素和IOTA角叉菜胶的三个公式,以确定最优化的配方。最优化的配方是根据有机摄影特性以及凝胶强度和硬度,总酚含量(TPC)和抗氧化活性测试的结果(3-乙基氮二氮乙烷-6-6-磺酸)的结果。葡萄糖素萃取产生了92.40%的产率,葡萄糖量为46.32%。分光光度计分析表明提取物中存在葡萄糖干,进一步的测试表明它随着凝胶强度和硬度的降低而增加。发现公式I产生了最佳的果冻纹理,总酚含量为0.30%GAE(Formula II 0.13%GAE; Formula III 0.27%GAE)和ABTS自由基清除活性为90.51%(II:73.49%; III:III:88.16%)。总而言之,含有6.35 g的Carrageenan,2.12 g葡糖甘甘,1.5 g roselle,0.03 g柠檬酸和0.003 g Suclalose具有最佳组成的最佳组成,可以创建最弹性和最牢固的果冻纹理,具有最高的酚类含量和根本的清道活性。
海藻因其细胞壁多糖(例如琼脂,阿尔金,角叉菜胶等)以及肥料,饲料和生物活性代谢物而被商业地利用。海藻也代表了脂肪酸,维生素和矿物质的极好来源。它们是由分类学杰出的绿色(叶绿体),棕色(Phaeophyta)和红色(Rhodophyta)海藻组成的海洋大植物。这些海藻资源在我们的半岛海岸线以及安达曼 - 尼科巴尔(Andaman-Nicobar)和lakshadweep群岛上的潮汐和潮汐间水中最佳增长。印度被赋予超过206万吨的湿湿生物质,属于700种。,将近60种对它们的多糖和继发代谢物在经济上很重要。每年从印度的野外收获约20,000吨(湿重)。印度对海藻的商业开发已于1966年开始。海藻(例如Gelidiella,Gracilaria和Sargassum)一直从印度出口到1975年。,但是,印度政府考虑到当地琼脂和阿尔金工业的需要,后来禁止出口。但是,印度的海藻行业尚未生产所需数量的藻酸钠和琼脂。结果,印度每年都会进口琼脂和阿尔金,花费大量外汇。目前,来自古吉拉特邦海岸的海藻和泰米尔纳德邦的许多地区都是由小型和大型行业收获的。该电台还开发了一种用于从Gracilaria spp生产琼脂的家庭手工业方法。自1972年以来,印度的ICAR中央海洋渔业研究所(CMFRI)一直在印度开展海藻马养殖和海藻利用率。CMFRI的Mandapam区域站开发了用于使用筏,coir-Rope Nets/Spore方法的琼脂Gracilaria Edulis的商业规模种植技术。和sargassum spp的藻酸。在1980年代,并向许多农民和企业家展示了琼脂和阿尔金的生产。这些示威活动为在泰米尔纳德邦Madurai的许多小规模琼脂行业开发铺平了方法。
摘要本研究使用各种体内模型评估了Cordia subcordata(CS)提取物的镇痛,抗炎和抗关节炎特性,包括von Frey测试,尾浸出测试,Carrageenan诱导的PAW水肿,乙酸乙酸诱导的血管渗透性,尾巴渗透性,尾巴免疫能力,尾巴免疫,免疫性,免疫性测试和辅助 - 辅助(Aria)。冯·弗雷(Von Frey)的测试表明,以400 mg/kg的速度CS显着降低了疼痛阈值,而在0分钟的CS下,CS在0分钟时没有影响,但逐渐抑制了超敏反应(P <0.001)。随着时间的流逝,Tail Immersion Immision Immention研究表现出了CS 400(P <0.001)的显着分析活性,虽然比<0.001),但比DIC较小。在角叉菜素诱导的PAW水肿模型中,CS在服用后第3和第5小时显着抑制PAW水肿(P <0.001),可与乙酸双氯芬酸钠相当,在乙酸的血管渗透测试中,CS诱导的染料可显着降低染料泄漏,指示性抗药性。在AIA模型中,CS有效地减少了PAW体积和归一化的血液学参数,包括WBC,RBC,血小板计数和ESR。这些发现强调了脐带亚科的治疗潜力作为天然抗炎和镇痛药,因此需要进一步研究临床应用。关键字:CS提取物;角叉菜胶;消炎(药;机械异常动物症接受了24.10.2024修订的12.11.2024接受了12.12.2024如何引用本文:Vikas P P,Preeti K.镇痛,抗炎和抗关节炎的Cordia subcordata提取物。adv。生物。第16卷[1] 2025年1月。01-09
炎症是对不同刺激的复杂,自然的保护反应,其特征是血管扩张和渗透,而血管中的白细胞激增。目前的治疗方法涉及使用抗炎药,皮质类固醇和非甾体类抗炎药(NSAID),这些药物与不良副作用有关,尤其是胃肠道溃疡。因此,越来越需要探索药用植物的替代来源。在本研究中,我们研究了使用体内和硅分子对接的肯尼亚叶子叶片叶片的抗炎活性。基于DNA条形码进行植物样品的分子鉴定。粗提物,并分别使用Folin-Ciocalteu和氯化氯化铝colori公制方法对总酚类和类黄酮进行了初步鉴定。carlageenan诱导的PAW水肿的经典模型用于测试提取物的体内抗炎活性。使用激光拉曼光谱和液相色谱质谱法(LC-MS)筛选提取物,以及通过分子停靠物进行的环氧酶-2(COX-2)的结合位点所鉴定的化合物之间的分子相互作用,该化合物是通过分子停靠物进行的,作为In Vivo实验的确认工具。基于DNA条形码分析,将植物样品鉴定为尿布种。水提取物显着(p <0.05)减少了炎症的角叉菜胶模型中的爪水肿。这些发现暗示了尿布sp。水和甲醇的总酚类含量:二氯甲烷提取物为3.75 mg食酸等效物(GAE)/G干燥样品和6.26 mg GAE/G干燥样品,而总黄酮类含量为0.3872 mg槲皮素/g干样样品和1.76 mg quercetin/g dryplice/g drame cribetin/g drame含量。LC-MS证实了19种植物化学物质的存在,其中10和9是酚类和类黄酮化合物。与这些鉴定的化合物槲皮素与COX-2复合时达到了最低的结合能,其次是鼠李糖蛋白,Quer cetin rhamnoside,epigallocatechin Gallate和氯酸酸。分子对接研究支持了体内发现,并确认了尿布sp的抗炎潜力。是可以在
背景:海藻行业经历了快速增长,尤其是在食品,饲料,生物燃料和生化的生产方面。印度尼西亚已成为新鲜,冷冻和干海藻的最大出口商;但是,角挑菜衍生物仍然受到限制。对海藻的需求不断增加,但是针菜衍生产品的海藻原材料的供应尚未达到国际标准,因此它未能完全满足需求。海藻生产以原材料出口,农民,生产者,地方政府和其他利益相关者尚未享受其附加值。对角叉菜胶的需求,尤其是作为食品行业的原材料,正在增加,这强调了海藻供应的重要性。目的:本研究的目的是管理海藻衍生产品在塔卡拉尔摄政的Laikang Village的海藻生产中心地区的Carrageenan衍生产品的原材料。设计/方法论/方法:本研究使用了对Miles,Huberman和Saldana的互动模型的定性分析。所使用的技术包括半结构化访谈,在该访谈中,实现更灵活以公开识别问题。被要求提供更多详细的信息和想法,然后观察到发现/结果:研究结果表明,Laikang Village的海藻供应的管理在数量方面足够,但根据农业行业的需求,质量方面仍然缺乏。结论:为了通过更便宜的种子,改善分配和环保实践培训来提高海藻质量,政府的帮助至关重要。在这项研究中强调了市场研究和供应管理中的战略规划,该研究预示着Laikang的Carrageenan衍生品的海藻供应。虽然下游处理法规可以通过最大程度地减少原材料出口,有效的供应/价值(艺术状态)来优化经济潜力:这项研究通过调查未明确定义,不明显的知识或不足的问题而做出了原始贡献(探索性(探索性),从而更好地理解了范围的供应范围,从而可以使范围的原始材料的供应范围,从而使laikanan的原始材料的供应范围,从而使laikanan的原始材料的供应范围为laikanan,从而使laikanan carrageanan naikang的原始材料的供应。受试者正在研究。
未精制(原)糖、经验证的可持续未精制(原)糖、糖蜜、用于生产乙醇的糖蜜、用于动物饲料的糖蜜、用于蒸馏的糖蜜、用于食品配料的糖蜜、结晶果糖粉、葡萄糖粉、一水葡萄糖、高果糖玉米糖浆、液体葡萄糖糖浆、麦芽糊精粉、麦芽糖浆、乙酰磺胺酸钾 (Ace-K)、阿斯巴甜、糖精钠、三氯蔗糖、木糖醇、天然玉米淀粉、改性玉米淀粉、玉米粉、天然木薯淀粉、木薯淀粉、小麦淀粉、苹果、葡萄、柠檬、芒果、橙子、梨、菠萝、番茄、芦荟、杏、香蕉、樱桃酸、番石榴、橘子、胡萝卜、椰子、百香果、桃子、椰果、草莓、碱化脂肪还原可可粉、去皮花生碎、碎花生、去壳芝麻、花生粉、花生酱/花生酱、花生、芝麻、花生碎、全澳洲坚果、无水乳脂、黄油、酪蛋白粉、全脂奶粉、全脂奶粉、脱脂奶粉、甜乳清粉、乳清蛋白浓缩物、全脂奶粉、AFP 卷、HDPE 树脂、LDPE 树脂、LLPDE 树脂、PP 树脂、PET 树脂、PS 树脂、不透明白色 r、rPET 薄片、rPET 树脂、rHDPE 树脂、rPP 树脂、玻璃瓶、纸、大卷、牛磺酸、酸度调节剂、无水柠檬酸、柠檬酸粉、一水柠檬酸、苹果酸、苹果酸粉、柠檬酸钠、柠檬酸钠粉末、抗坏血酸、抗坏血酸粉末、丙酸钙、丙酸钙粉末、谷氨酸钠、味精粉末、山梨酸钾、山梨酸钾粉末、苯甲酸钠、苯甲酸钠粉末、羧甲基纤维素 (CMC)、角叉菜胶、改性淀粉、天然玉米淀粉、果胶、木薯淀粉、黄原胶、青苹果香精、清凉薄荷、大米基葡萄糖糖浆、大麦、木薯片、可溶性干酒糟 (DDGS)、玉米、棉花、柑橘颗粒、鱼粉、大米、大豆、豆粕、大豆油、葵花籽油、硝酸铵、混合 NPK、NPK、尿素、甘蔗渣、甘蔗渣颗粒、椰子壳、椰子壳、混合热带草颗粒、秸秆颗粒、棕榈仁、稻壳、稻壳颗粒、木材颗粒、空果串、VIVE 验证的可持续生物质、传统能源、激励能源(可再生)、VIVE 或 I-REC 验证的可持续能源信用、含水乙醇、无水乙醇、燃料级乙醇、工业级乙醇、中性级乙醇、太阳能……
缩写:3D,三维;ABA,氨基苯硼酸;ACC,氨基羧甲基壳聚糖;ACNC,乙酰化纤维素纳米晶体;AF,纤维环;AF127,醛封端的普卢兰尼克 F127;AG-NH2,琼脂糖-乙二胺共轭物;Ag-CA,羧基化琼脂糖;AHA,醛基透明质酸;AHAMA,甲基丙烯酸酯化醛基透明质酸;AHES,醛基羟乙基淀粉;ALG,海藻酸钠;AMP,抗菌肽;APC,抗原呈递细胞;ASF,乙酰化大豆粉;AT,苯胺四聚体;ATAC,2-(丙烯酰氧基)乙基三甲基氯化铵;ATRP,原子转移自由基聚合;Azo,偶氮苯;家蚕,Bombyx mori;BA,硼酸;BCNF,氧化细菌纤维素纳米纤维;Bio-IL,生物离子液体;BMP-2,骨形态发生蛋白 2;BSA,牛血清白蛋白;BTB,硼砂-溴百里酚蓝;Ca-FA,CaCl 2 -甲酸;CA,氰基丙烯酸酯;Cat,含儿茶酚的多巴胺-异硫氰酸酯;Cat-ELPs,儿茶酚功能化的 ELR;CBM,纤维素结合模块;CD,环糊精;CD-HA,β-CD 修饰的透明质酸;CDH,碳酰肼;cGAMP,环状鸟苷单磷酸-腺苷单磷酸;CH,胆固醇半琥珀酸酯;CHI-C,儿茶酚共轭壳聚糖; CL/WS2,二硫化钨-儿茶酚纳米酶;CMs,心肌细胞;CMCS,羧甲基壳聚糖;CNC,纤维素纳米晶体;CNF,纤维素纳米纤维;CNT,碳纳米管;COL,胶原蛋白;CPEs,化学渗透促进剂;CS,硫酸软骨素;CsgA,Curli 特异性纤维亚基 A;CS-NAC,壳聚糖-N-乙酰半胱氨酸;CSF,脑脊液;CTD,C 端结构域;CtNWs,几丁质纳米晶须;D-MA,甲基丙烯酸酯化羟基树枝状聚合物;DAHA,二醛-透明质酸;DCs,树突状细胞;DDA,葡聚糖二醛;dECM,脱细胞 ECM; DEXP,地塞米松磷酸二钠;Dex,葡聚糖;DF-PEG,双醛功能化聚乙二醇;DNNA,双网络神经粘合剂;DOPA,L-3,4-二羟基苯丙氨酸;DOX,阿霉素;DPN,脱细胞周围神经基质;DST,双面胶带;E-tattoo,电子纹身;E. coli,大肠杆菌;ECG,心电图;ECM,细胞外基质;ePTFE,聚四氟乙烯;ELP,弹性蛋白样多肽;ELRs,弹性蛋白样重组体;EMG,肌电图;EPL,ε-聚赖氨酸;EPS,胞外多糖;ER,内质网;FDA,食品药品监督管理局;FGFs,成纤维细胞生长因子;FibGen,京尼平交联纤维蛋白凝胶; FITC,硫氰酸荧光素;FS-NTF,纳米转移体;呋喃,糠胺;GA,没食子酸;GAG,糖胺聚糖;GC,乙二醇壳聚糖;Gel-CDH,碳酰肼修饰明胶;GelDA,多巴胺修饰明胶;GelMA,明胶-甲基丙烯酰;GI,胃肠道;GRF,明胶-间苯二酚-甲醛;GRFG,明胶-间苯二酚-甲醛-戊二醛;H&E,苏木精和伊红;HA,透明质酸;HA-Ac,透明质酸-丙烯酸酯;HA-ADH,己二酸二酰肼修饰透明质酸;HA-ALD,醛修饰透明质酸;HA-NB,硝基苯衍生物修饰透明质酸;HA-PEG,透明质酸-聚乙二醇;HA-PEI,透明质酸-聚乙烯亚胺;HA-SH,硫醇化透明质酸;HAGM,透明质酸甲基丙烯酸缩水甘油酯;HaMA,甲基丙烯酸酯化透明质酸; HAp,羟基磷灰石;HBC,羟丁基壳聚糖;HES,羟乙基淀粉;HFBI,疏水蛋白;HIFU,高强度聚焦超声;hm-Gltn,疏水改性明胶;HPMC,羟丙基甲基纤维素;HRP,辣根过氧化物酶;Hypo-Exo,缺氧刺激的外泌体;ICG,吲哚菁绿;iCMBAs,基于柠檬酸盐的受贻贝启发的生物粘合剂;IGF,胰岛素样生长因子;iPSC,多能干细胞;IPTG,β-d-1-硫代半乳糖苷;ITZ,伊曲康唑;IVD,椎间盘;JS-Paint,关节表面涂料;KGF,角质形成细胞生长因子;KaMA,甲基丙烯酸酯化κ-角叉菜胶; LAP,苯基-2,4,6-三甲基苯甲酰膦锂盐;LCS,液晶;LCST,低临界溶解温度;LDH,层状双氢氧化物;LDV,亮氨酸-天冬氨酸-缬氨酸;LM,液态金属;m-AHA,单醛透明质酸;MA,甲基丙烯酸酐;MADDS,粘膜粘附药物递送系统;MAP,贻贝粘附蛋白;MATAC,2-(甲基丙烯酰氧基)乙基三甲基氯化铵;mAzo-HA,mAzo 修饰透明质酸;MBGN,介孔生物活性玻璃纳米颗粒;MCS,修饰茧片;MDR,多重耐药;mELP,甲基丙烯酰弹性蛋白样多肽;MeTro,甲基丙烯酰取代的原弹性蛋白;Mfp,贻贝足蛋白; MI,心肌梗死;MMP,基质金属蛋白酶;MN,微针;MPs,单分散微粒;MRSA,耐甲氧西林金黄色葡萄球菌;MSC,间充质干细胞;NB,N-(2-氨基乙基)-4-[4-(羟甲基)-2-甲氧基-5-硝基苯氧基]-丁酰胺;NFC,纳米纤维化纤维素;NGCs,神经引导导管;NHS,N-羟基琥珀酰亚胺;NIR,近红外光;NPs,纳米粒子;NTD,N-端结构域;ODex,氧化葡聚糖;OHA-Dop,多巴胺功能化氧化透明质酸;OHC-SA,醛功能化海藻酸钠;OPN,骨桥蛋白; OSA-DA,多巴胺接枝氧化海藻酸钠;OU,口腔溃疡;p-AHA,光诱导醛透明质酸;PAA,聚丙烯酸;PAE,聚酰胺胺-环氧氯丙烷;PAMAM,胺基端基第五代聚酰胺多巴胺;PBA,苯基硼酸;PCL,聚己内酯;PDA,聚多巴胺;PDMS,聚二甲基硅氧烷;PDT,光动力疗法;PEA,2-苯氧乙基丙烯酸酯;PEG,聚乙二醇;PEDOT,聚(3,4 乙烯二氧噻吩);PEI,聚乙烯亚胺;PEGDMA,聚乙二醇二甲基丙烯酸酯;PEMA,2-苯氧乙基甲基丙烯酸酯;PepT-1,肽转运蛋白-1;PG,焦性没食子酚;PGA,聚乙醇酸;pHEAA,聚(N-羟乙基丙烯酰胺);PMAA,羧甲基功能化聚甲基丙烯酸甲酯;PSA,压敏粘合剂;PTA,光热剂;PTT,光热疗法;PVA,聚乙烯醇;QCS,季铵化壳聚糖;rBalcp19k,重组白脊藤 cp19k;RGD,精氨酸-甘氨酸-天冬氨酸;rGO,还原氧化石墨烯; RLP,类弹性蛋白多肽;rMrcp19k,Megabalanus rosa cp19k;ROS,活性氧中间体;rSSps,重组蜘蛛丝蛋白;SCI,脊髓损伤;SCS,蚕茧片;SDBS,十二烷基苯磺酸钠;SDS,十二烷基硫酸钠;SDT,声动力疗法;SF,丝素;sIPN,半互穿聚合物网络;S. aureus,金黄色葡萄球菌;STING,干扰素基因刺激剂;SUPs,超荷电多肽;SY5,外皮蛋白抗体;TA,单宁酸;TEMED,四甲基乙二胺;TEMPO,2,2,6,6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素; Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。
药物赋形剂在新药开发中起着至关重要的作用。赋形剂的选择是制定科学家选择材料的正确等级和数量的关键步骤。因此,了解赋形剂的性质,起源和与活性药物成分(API)的兼容性是必不可少的。在这里,我们根据其给药,起源和功能将药物赋形剂分为不同的类别:赋形剂的类型:药物赋形剂在药物输送和有效性中起着至关重要的作用,尽管不活跃。它们被用作填充剂,粘合剂,涂料,崩解剂等,以确保稳定性,吸收和安全性。主要赋形剂是与配方相关的固体剂量,但是由于价格和竞争,它们的使用处于压力下。不同的制造商可能具有不同的规格,并且应用的制造工艺或原材料可能会影响赋形剂特征。这些无名行业的无名英雄有各种类型,包括无机和有机化学物质。药物赋形剂可提高溶解度,生物利用度和控制药物释放率,提供稳定性,改善味道和增强外观。了解它们的重要性对于欣赏药物配方和个性化药物的复杂性至关重要。###药物赋形剂通过用作粘合剂,稀释剂,崩解剂,润滑剂和涂料在药物制剂中起着至关重要的作用。*像羟丙基甲基纤维素(HPMC),氢核糖和玉米淀粉一样的粘合剂,将成分保持在一起。这些添加剂可以增强药物的外观,美学吸引力,味觉和吞咽性,最终提高患者的依从性,尤其是在儿科和老年群体中。不同类型的赋形剂具有特定的功能: *稀释剂,例如微晶纤维素,乳糖和淀粉,有助于提供大量药物。*溶解剂,例如淀粉乙醇酸钠,纤维素衍生物和povidone辅助药物的吸收分解。*由HPMC,氢核糖和Candelilla蜡制成的涂料可改善味道和吞咽特征。除了其特定作用外,赋形剂还有助于药物的剂量形式,无论是片剂,液体还是可注射剂的形式。他们可以增强药物的外观和美学吸引力,使它们对患者更具吸引力。悬浮剂:共解酮,聚乙烯氧化物;颗粒剂:共解酮,聚乙烯氧化物;膜形成:羟丙基甲基纤维素(HPMC),氢蛋白酶。涂料材料:opadry,二氧化钛,钉,甲基纤维素,乙基纤维素。片剂粘合剂:明胶,粘液。崩解剂:硬脂酸钙,硬脂酸镁,胶体二氧化硅。润滑剂:硬脂酸镁,硫酸钠钠,硬脂素富马酸钠,蓖麻油氢化。滑翔机:滑石粉,胶体硅二氧化硅。乳化剂:甘油酸酯,氧化聚乙烯。悬浮代理:黄玉口香糖,角叉菜胶。膜形成聚合物:HPMC,氢化素。肠涂料材料:Eudragit。防腐剂:甲基对羟基苯甲酸酯,丁替替苯甲酸酯,羟基苯甲酸羟基苯甲酸酯,索比克酸,苄醇,丙酸钠,索比特钾,苯甲酸钠。增塑剂:甘油,矿物油,柠檬酸三乙酯,三乙酸酯。保湿剂:甘油,矿物油,三乙酸酯。溶剂:聚乙烯氧化物,甘油。滋补剂:氯化钠。甜味剂:糖精,阿斯巴甜。磷酸盐缓冲剂二硫酸剂充当抗染料剂,润肤剂和持续释放成分;甘氨酸用于良性。甘油单肠酸盐用作乳化剂,溶解剂和片剂粘合剂;糖贝纳特作为涂料剂和片剂粘合剂的功能。碳酸氢钾充当碱化剂和治疗剂,而磷酸则用作酸化剂。多氧40硬脂酸酯用作乳化剂和溶解剂,而硅胶用于吸附。山梨糖醇单消毒剂是一种溶解剂,钠代表硫酸钠充当抗氧化剂。柠檬酸钠二水合物作为碱化剂,缓冲剂和乳化剂的功能。琥珀酸用作酸度调节剂。药物赋形剂是添加到药物中的物质,以增强其性能和稳定性。这些添加剂包括涂料剂,例如纤维素衍生物和聚乙烯醇,可帮助片剂或胶囊在体内分解。溶解剂,例如淀粉,纤维素衍生物和淀粉乙醇酸酯,可确保这些药物与胃肠道中的水接触时,可以平稳地分解。润滑剂,例如滑石粉和硬脂酸镁,可防止成分在制造过程中结合在一起。赋形剂对药物的愈合能力没有直接影响,但它们在制剂中至关重要,确保稳定性和使患者更容易接受药物。这些添加剂还可以通过修改吸收率和溶解度来调整药物性能。赋形剂可以在特定的pH水平下迅速溶解,从而使药物选择性递送到胃肠道的某些区域,从而优化吸收。对于某些药物化合物,赋形剂可以提高溶解度,对于需要胃肠道液体溶解的口腔摄入至关重要。药物赋形剂在通过充当抗氧化剂或防腐剂来维持药物稳定性方面也起着关键作用,从而通过与环境的化学反应来保护活性药物成分免受降解。它们还可以通过防止悬浮液或片剂变形中的成分的聚集或分离来保持身体稳定性。此外,赋形剂控制将药物释放到患者系统中。可以使用各种赋形剂来修改释放,例如形成矩阵的聚合物或控制药物扩散并延长作用持续时间的聚合物。肠涂的片剂使用赋形剂将药物免受胃酸的侵害,以确保它仅在可以吸收的上肠中释放。使用药物赋形剂可以显着影响某些药物的生物利用度,以增强或限制吸收。赋形剂可以通过修饰屏障特性或药物溶解度来改善生物屏障中可吸收不良的药物的渗透。一个常见的例子是将吸收增强剂与肽药物结合在口服制剂中,以增强其通常较差的口服生物利用度。相反,某些赋形剂可以通过在胃肠道中与它们结合并减少其吸收到全身循环中,从而限制某些药物的吸收,从而控制过量和毒性。除了生物物理特性之外,赋形剂还可以在增强药物可服从性方面发挥额外的作用,最终导致患者的可接受性和依从性,这对儿科和老年患者尤为重要。他们可以改善味道,香气或颜色,从而使药物对患者更具吸引力。没有赋形剂,许多药物可能具有不愉快的味道或气味,灰心丧气。赋形剂是药物制剂中的关键组成部分,可提高稳定性,有效性,控制释放和管理吸收水平。它们的影响扩展到患者的可接受性和整体药物的效力,这使得他们的纳入至关重要。赋形剂还可以堆积固体药物制剂以确保药物功效。赋形剂在药物组成中的重要性必须在批准之前严格遵守安全标准和法规。在药品中使用赋形剂之前,它必须进行严格的安全测试,以证明对患者没有明显的风险。为了保护患者,公司必须概述对药物包装的潜在副作用。这包括体外和体内测试,重点是毒性,遗传毒性,全身毒性,刺激或敏化的潜力,生殖系统效应和致癌性。每种赋形剂都需要在用于药物产品之前的监管批准,而美国FDA和EMA在设定安全标准方面发挥了关键作用。尽管进行了严格的测试,但药物赋形剂可能会导致某些患者的副作用,范围从轻度反应到更严重的反应。宣布药物中使用的赋形剂的透明度对于患者的安全至关重要,因为某些患者可能会对某些赋形剂产生过敏或不耐受性,这对于他们必须意识到药物中的所有成分至关重要。为了确保医疗保健提供者在开处方药时的明智决定,FDA要求制造商在标签上列出其产品中使用的所有赋形剂。一旦获得赋形剂获得监管批准并正在使用,它会通过销售后的监视不断评估,以检测任何意外的不良反应并采取适当的行动。赋形剂对药物疗效的关键影响通常被低估了,因为它们不仅影响生物利用度,而且还要管理活跃的药物成分递送,并有助于药物稳定性和安全性。辅助测试和严格的调节对于确保药物配方的安全性和效力至关重要。赋形剂不再考虑惰性;相反,它们现在旨在提高药物效率。科学家可以使用纳米技术更准确地控制赋形剂特性,从而提供出色的药物递送解决方案。定制赋形剂的创建是一个不断发展的领域,由于赋形剂功能理解和尖端技术的进步,它允许精确的设计和生产。纳米技术是一个突破性的领域,具有纳米尺寸的赋形剂,有助于通过独特的相互作用潜力来增强药物效力。也有从植物,动物或海洋来源向自然或生物赋予的转变,这些植物,动物或海洋来源提供了增加的药物可利用性,生物相容性和制造成本降低。赋形剂使用的未来趋势是为个性化医学量身定制,在这种情况下,精确的药物不仅需要在活跃的药物中,而且还需要革命性的耐用性,并在启用范围内进行了启发性,并且耐受性,患者的耐受性,适用性,耐用性,耐用性。药品,使形状,大小和成分的个性化药物剂量。赋形剂会影响最终产品的属性,例如释放动力学,机械性能和处理,从而可以精确控制空间沉积,以最大程度地提高功效,同时最大程度地减少副作用。赋形剂领域并非没有挑战,监管障碍是持续的障碍。然而,创新赋形剂在提高药物疗效和患者合规性方面的潜在益处使得持续的研究和监管进化至关重要。随着新技术的出现,例如工程或纳米赋形剂,它们可能需要复杂的监管途径才能获得批准。然而,这些进步可能会彻底改变药物递送,为全球患者提供新的治疗选择。药物赋形剂正在迅速发展,新型类型和前瞻性方法正在不断发展。尽管经常没有注意到,这些成分通过影响药物的吸收,有效性和稳定性而在现代医学中起着至关重要的作用。