这项迷你审查将重点放在过去3年中乙烯基聚合物的光催化升级和解聚的发展。首先简要讨论聚苯乙烯的升级,以及有关其他不可生物降解聚合物的升级的最新报道。有关聚苯乙烯升级的全面摘要,鼓励读者参考最近的出色评论。[6,7b,c,8]相反,这项迷你综述旨在对乙烯基聚合物的光催化降解进行严格讨论,包括聚甲基丙烯酸酯,聚丙烯酸酯,聚丙烯酸酯和其他材料,例如聚乙烯基醚。尽管当前的聚合物晶体降解策略不会像聚苯乙烯那样产生高增值的小分子,但它们可以通过高效的光催化过程将其完全解散回成单体。最后但并非最不重要的一点是,在讨论我们对令人兴奋的新方向的愿景中提供了关键的未来前景。
引用:perpetua ifeoma chinedu Isaac。(2025)。为可持续工业和生物医学应用的可生物降解聚合物的开发和优化。聚合物科学技术杂志(JPST),3(1),1-7。摘要链接:https://iaeme.com/home/article_id/jpst_03_01_001文章链接:https://iaeme.com/masteradmin/masteradmin/journal_uploads/jpst/jpst/volume_issue_1/jpst_03_03_03_01_001.pdf
摘要 - Q学习已成为增强学习工具包的重要组成部分,因为它在1980年代的克里斯·沃特金斯(Chris Watkins)论文中引入了。在原始表格公式中,目标是精确地计算出折扣成本优化方程的解决方案,从而获得马尔可夫决策过程的最佳策略。今天的目标更为适中:在规定的功能类中获得近似解决方案。标准算法基于与1980年代公式相同的体系结构,其目的是找到一个求解所谓的投影贝尔曼方程的价值函数近似。虽然增强学习一直是一个活跃的研究领域,但几乎没有理论提供这些Q学习算法的融合条件,甚至存在该方程的解决方案。本文的目的是表明,只要函数类是线性的,并且用于训练的输入是ε-绿色策略的一种形式,并且具有足够小的ε。此外,在这些条件下,就界限参数估计而言,Q学习算法是稳定的。融合仍然是众多研究主题之一。
摘要:纳米材料作为润滑油添加剂引起了极大的关注,因为它们具有可设计的组成和结构,合适的机械性能和可调的表面功能。但是,纳米材料和碱基油之间的兼容性不佳限制了其进一步的应用。在这项工作中,我们证明了油溶性聚(LAURYL甲基丙烯酸酯)(PLMA)刷刷的金属有机框架纳米颗粒(Nanomofs)是润滑油添加剂,可实现有效的摩擦减少和抗磨损性能。大型原始子,该聚合将其配位移植到UIO-67纳米颗粒的表面上。然后,通过表面启动的原子传递自由基聚合化在大型引起剂修饰的UIO-67上生长PLMA刷,从而极大地改善了UIO-67纳米颗粒的亲脂性特性,并显着增强了非极性溶剂溶液和碱基机油中胶体稳定性和长期分散性。通过将UIO-67@PLMA纳米颗粒添加到500 sn的基础油中,摩擦系数和磨损量减少了45.3%和75.5%,因为它们的出色机械性能和油的散发性。此外,UIO-67@PLMA添加剂的载荷能力从100 n大大增加到500 N,即使在65 Hz的高摩擦频率和120°C的高温下也证明了它们的出色摩擦学性能。我们的工作强调了油溶性聚合物刷官能化纳米型,以高效润滑添加剂。关键字:MOFS;聚合物刷;表面修饰;摩擦学特性;减少摩擦;反衣
摘要。这篇关键评论探讨了可生物降解的聚合物生物材料在组织工程中的应用,从而强调了它们革命性的再生医学和组织替代品的潜力。可生物降解的聚合物由于它们模仿细胞外基质的能力,因此为开发组织支架的发展提供了一种可持续的替代方法,该替代品以与新组织形成相匹配的速率降解。本综述系统地涵盖了这些材料的演变,类型和应用,以解决自然和合成聚合物。特别注意制造技术,以及3-D生物打印和纳米制作,从而引入了针对独特的组织工程包装量身定制的脚手架。评估讨论了当代苛刻的情况,以及机械性能和生物降解性之间的平衡,以及脚手架与宿主组织的混合。此外,它会深入研究未来的方向,包括杂交生物材料的发展以及生物活性分子的掺入以增强组织再生。可生物降解的聚合物生物材料的进步构成了朝着开发更有效和个性化的组织工程过程的方向迈出的巨大步骤。
值是 n (%) 或中位数(第一四分位数-第三四分位数)。ACS,急性冠状动脉综合征;ARC;学术研究联盟,CABG;冠状动脉搭桥手术,CCS;慢性冠状动脉综合征,HBR;高出血风险,H2 阻滞剂;组胺 2 型受体拮抗剂,eGFR;估计肾小球滤过率,MI;心肌梗死,NSTEMI;非 ST 段抬高型心肌梗死,PCI;经皮冠状动脉介入治疗,P-CAB;钾竞争性酸阻滞剂,PPI;质子泵抑制剂,STEMI;ST 段抬高型心肌梗死
标题:塑料通过基于等离子体的基于等离子体的解聚,利用水性和气态排放暴露于工作夏季的陈述塑料的增殖促成了巨大的环境损害,不仅损害了动物栖息地,而且还会损害食物链,从而通过释放毒素而成为公共健康风险(例如染料和修饰符)包含塑料中。通过垃圾填埋场处理塑料和能源回收,分别是由于半衰期和温室气体排放而不是实用的解决方案。机械回收是一种解决方案,但受聚合物类型的限制并产生较低质量的塑料。目前,塑料升级,塑料向更高价值产品的转化,由于高热量要求(用于热解)是能量密集型的。等离子体为塑料的解聚提供了一种更绿色的方法,还提供了升级的可能性,以制造高价值的产品,例如高级塑料和燃料。非热等离子体尤其是能源效率的,并且在空气上的运行意味着实施不需要外来的进料气体才能运行。在这里,血浆用于基本上通过细分将聚合物解构到其前体单体。意识到这种等离子体视觉的关键是优化气相和表面化学。与液体中聚合物去聚合有关的表面化学反应令人信服,因为环境是天然散热器和血浆本身输入反应性物种的储层。此外,自组织过程可以在局部大大增强反应性物种的局部电场和密度。自组织效应尚未充分探索。这项工作的目的是研究和表征来自聚合物粉末,颗粒的液体悬浮液的相互作用以及与低频等离子体射流产生的血浆和DC 1 ATM发光的血浆相互作用的分解产物。在这里,我们旨在阐明如何使用发射光谱和FTIR推断出的等离子体参数,包括表面自组织,诱导流体流动和液滴发射效应分解过程。
农业的可持续性强化是全球粮食安全战略的重要组成部分,旨在产生高农作物产量,并产生最小的环境影响(Garnett等人,2013年;联合国,2015年)。未来的粮食系统需要保护或改善土壤健康和生育能力,这是由有效的营养管理为最大程度地减少造成异地污染的土壤损失的基础(Foley等,2011; Steffen et al。,2015; 2015; United;联合国,2019年)。氮(N)引起了人们的关注,因为土壤中的N损失引起了深刻的环境问题,并提出了路线图来提高n在种植中的N使用效率(Udvardi等,2021)。在热带地区,土壤和气候条件下加剧了有效的肥料使用的挑战,因为土壤可以高度风化,肥料养分不那么良好(Baligar&Bennett,1986),温暖的温度加速了土壤有机物和微生物养分的损失(Stanford et and-nutentiers rain。 (Bouwman,1998; Seyfried&Rao,1987)。
在过去的几十年中,塑料产量和塑料废物不雄厚的指数增长引起了全球不断提高的关注。1 - 3为了减轻塑料废物的环境影响,必须开发塑料回收方法以外的土地和焚化。虽然机械回收已用于恢复热塑性塑料,但再生的原材料因降低而产生。4,5化学回收吸引了近年来的研究兴趣。4,6 - 9打破聚合物骨架中的C - C,C - O或C - N键可以使后消费者塑料转化为新材料的构件。例如,多核的氢解会产生有价值的产品,例如液体燃料,蜡和润滑剂。 10 - 12
此预印本的版权持有人(此版本发布于2024年4月1日。; https://doi.org/10.1101/2024.04.04.044.01.587509 doi:biorxiv Preprint
