摘要 生物动力馈通 (BDFT) 是未来驾驶舱触摸屏操作的一个关键问题,因为湍流导致的驾驶舱加速使飞行员容易受到错误触摸的影响,从而影响任务执行。本研究重点是实施基于软件的取消方法,以减轻 BDFT 在触摸屏拖动任务中的不利影响。进行了一项有 18 名参与者的飞行模拟器实验,以估计主飞行显示器上水平和垂直触摸输入的 BDFT 动力学模型。平均 BDFT 模型用于在用于模型识别的相同连续拖动任务和离散点对点拖动任务中取消 BDFT。虽然对于连续任务,取消使 BDFT 缓解了 63%,但由于 BDFT 敏感性降低,同样的取消对于离散任务无效。总体而言,结果表明,虽然基于模型的 BDFT 取消可能非常有效,但一个关键的技术挑战是确保它具有足够的任务自适应性。
将触摸屏交互整合到驾驶舱飞行系统中,为飞机制造商、航空公司和飞行员提供了多种潜在优势。然而,振动和湍流对可靠的交互提出了挑战。我们研究了支撑触摸交互的设计空间,它允许用户通过在触摸屏上支撑多个手指,在完成选择之前机械地稳定选择。我们的目标是在高振动水平下实现快速准确的目标选择,而不会在没有振动时妨碍交互性能。评估了三种不同的支撑触摸方法,使用双击、停留或力阈值结合启发式选择标准来区分有意选择和并发支撑接触。我们进行了一项实验,以测试这些方法在抽象选择任务和更现实的飞行任务中的表现。研究结果证实,支撑可以提高振动期间的性能,并表明双击是测试方法中最好的。
啮齿类动物的顺序和线索导向反应学习先前已被证明依赖于完整的纹状体信号传导。具体而言,这些行为依赖于纹状体多巴胺和乙酰胆碱的释放,在两个系统发生改变的动物模型中,顺序反应学习明显受损。在这里,我们提供了一种使用啮齿类动物触摸屏系统测试顺序响应/响应链学习的方案。具体而言,本方案旨在在啮齿类动物触摸屏设备中实施改编自 Keeler 等人 (2014) 的异质序列任务。此任务以前曾用于评估小鼠的复杂运动学习和反应选择。在以下方案中,任务是在基于触摸屏的自动化室中执行的,该室有五个响应位置,使用食物强化剂来维持性能。序列任务要求受试者从左到右依次对出现在五个不同位置的白色方形刺激物进行五次鼻子戳刺。© 2021 Wiley Periodicals LLC。
概述 提供词汇表以帮助读者理解不同的术语和短语。这些术语和短语以斜体显示。本手册中交替使用术语“无人居住”和“夜间退缩”,指代设备运行时间表中除有人居住时间段之外的所有时间段。本手册中交替使用术语“送风”和“排风”,指代通过排风口离开设备的调节空气。 Applied Air 的数字控制系统 AdaptAire 旨在以用户友好的包装为用户提供极致的设备性能和操作灵活性、适应性和可靠性。AdaptAire DDC 系统是 Applied Air 加热和冷却设备的标准组件。由于 AdaptAire 系统涵盖各种类型的设备,因此并非所有系统的功能都与所有设备相关。如果循环和非循环设备或直接燃烧或间接燃烧设备之间的功能相似但不同,则将单独解释该功能。 AdaptAire 可在系统网络上接受单个或多个设备。每个设备均可配备 Equipment Touch 触摸屏界面。Equipment Touch 通过 Equipment Touch 远程终端插头连接到设备控制模块。各个设备的操作参数可通过 Equipment Touch 输入。PC 也可连接到网络。这样可实现
在当今世界中使用触摸屏的使用已大大增加,尤其是在医疗保健中。近年来,致病微生物从触摸屏到人的传播引起了人们的关注。创建抗菌触摸屏的能力将有助于阻止致病细菌在医疗保健中的传播,而且在任何地方都使用了触摸屏。要创建一种可以掺入触摸屏以使其抗菌剂的材料,它们需要杀死微生物,光学透明并能够进行电力。我们的研究测试了石墨烯 - 铜硫酸盐复合材料的抗菌特性,特别是石墨烯 - 氧化石墨烯和硫化石墨烯。石墨烯 - 铜硫化物,并使用X射线光电子光谱法分析了两种材料。使用标准琼脂盘扩散对枯草芽孢杆菌和大肠杆菌进行测试。两种复合材料均表现出针对枯草芽孢杆菌的抗菌活性。我们的数据显示了创建抗菌触摸屏的有希望的第一步。
近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管具有大量优势,但此类解决方案在操作使用方面受到严重限制,特别是几乎不可能实现无需注视的交互,而且在湍流条件下使用触摸屏非常复杂。我们通过引入一种形状可变的触摸屏来研究物理特性对克服这些弱点的贡献,这种触摸屏提供了可供用户手部休息的褶皱。在模拟器中,在湍流和脑力负荷各不相同的驾驶条件下,对该表面进行了评估。结果表明,褶皱有助于通过稳定手臂和手部来减少体力消耗。这种物理特性还与驾驶任务中的更好表现以及对飞机系统状态的更好态势感知有关,这肯定是因为折叠提供的形状具有更好的视觉特性(显著性),使得对它们的监控在注意力资源方面成本更低。
近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管具有大量优势,但此类解决方案在操作使用方面受到严重限制,特别是几乎不可能实现无需注视的交互,而且在湍流条件下使用触摸屏非常复杂。我们通过引入一种形状可变的触摸屏来研究物理特性对克服这些弱点的贡献,这种触摸屏提供了可供用户手部休息的褶皱。在模拟器中,在湍流和脑力负荷各不相同的驾驶条件下,对该表面进行了评估。结果表明,褶皱有助于通过稳定手臂和手部来减少体力消耗。这种物理特性还与驾驶任务中的更好表现以及对飞机系统状态的更好态势感知有关,这肯定是因为折叠提供的形状具有更好的视觉特性(显著性),使得对它们的监控在注意力资源方面成本更低。
近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管这种解决方案具有众多优点,但在操作使用方面却受到严重限制,特别是几乎不可能实现免眼交互,而且在湍流条件下使用触摸屏极其复杂。我们研究了物理特性对克服这些弱点的贡献,方法是引入一种形状可变的触摸屏,该触摸屏具有可供用户手部休息的褶皱。在模拟器中,我们已经在各种湍流和脑力负荷的驾驶条件下评估了该表面。结果表明,褶皱通过稳定手臂和手部,有助于减少体力消耗。这种物理特性还与更好的驾驶任务表现以及对飞机系统状态的更好态势感知有关,这肯定是因为褶皱提供的形状具有更好的视觉特性(显著性),使得监控它们在注意力资源方面成本更低。
近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管这种解决方案具有众多优点,但在操作使用方面却受到严重限制,特别是几乎不可能实现免眼交互,而且在湍流条件下使用触摸屏极其复杂。我们研究了物理特性对克服这些弱点的贡献,方法是引入一种形状可变的触摸屏,该触摸屏具有可供用户手部休息的褶皱。在模拟器中,我们已经在各种湍流和脑力负荷的驾驶条件下评估了该表面。结果表明,褶皱通过稳定手臂和手部,有助于减少体力消耗。这种物理特性还与更好的驾驶任务表现以及对飞机系统状态的更好态势感知有关,这肯定是因为褶皱提供的形状具有更好的视觉特性(显著性),使得监控它们在注意力资源方面成本更低。