Parade Technologies 提供的信息被认为是准确可靠的。然而,Parade Technologies 对其使用不承担任何责任,也不对因使用而导致的任何专利或其他第三方权利的侵权承担任何责任。规格如有变更,恕不另行通知。Parade Technologies 不以暗示或其他方式授予任何专利或专利权的许可。商标和注册商标均为其各自所有者的财产。
Touch DNA是许多发达国家现代刑事司法系统中广泛使用的先进技术。它旨在从生物物质中提取遗传信息,特别是从皮肤最外层脱落的细胞,这些细胞被触摸的物体留在后面。这种方法涉及从接触过程中释放的生物细胞中恢复痕量的DNA,即使数量通常很低。进一步分析恢复的DNA以产生一个人的DNA谱。由于死细胞对肉眼没有真正可见,因此成功定位和恢复它们可能具有挑战性。从刚接触的样品中进行DNA分析非常困难,因此,需要高度敏感的方法来适当恢复,提取和放大段。用于收集,采样程序,保存,去除污染物,DNA的定量,遗传物质的放大以及对发现的随后分析和解释都在触摸DNA分析的工作方式中起作用。随着时间的推移,已经创建了各种技术来收集触摸DNA。可靠的DNA概况得益于使用复杂的套件,工具和设备齐全的法医实验室,这些实验室受益于刑事司法系统。
手指压力为触摸交互提供了一个新的维度,其中输入由其空间位置和正交力定义。然而,移动设备中集成力传感硬件的有限可用性和复杂性成为探索这一设计空间的障碍。本文介绍了近期移动设备中的两项功能的综合——气压传感器(压力高度计)和入口保护——以感测用户的触摸力。当用户对设备的显示屏施加力时,显示屏会向内弯曲并导致密封底盘内的气压升高。设备的内部气压计可以感测到这种压力的增加。然而,这种变化是不受控制的,需要校准模型将气压映射到触摸力。本文推导出这样的模型,并在四种商用设备(其中两种带有专用力传感器)上证明了其可行性。结果表明,该方法对小于 1 N 的力很敏感,并且可与专用力传感器相媲美。
手指压力为触摸交互提供了一个新的维度,其中输入由其空间位置和正交力定义。然而,移动设备中集成力传感硬件的可用性有限且复杂性成为探索这一设计空间的障碍。本文介绍了近期移动设备中的两个功能——气压传感器(压力高度计)和入口保护——的综合,以感测用户的触摸力。当用户对设备的显示屏施加力时,它会向内弯曲并导致密封底盘内的气压增加。设备的内部气压计可以感知到这种压力的增加。然而,这种变化是不受控制的,需要校准模型将气压映射到触摸力。本文推导出这样一个模型,并在四种商用设备(其中两种带有专用力传感器)上证明了其可行性。结果表明,该方法对小于 1 N 的力很敏感,并且与专用力传感器相当。
传统的技术设计方法历来忽视了黑人参与和概念化未来技术的能力。种族和阶级边缘群体的设计贡献往往被忽视,很少被视为设计标准。虽然已经出现了一些框架来鼓励人们关注设计中的性别和社会公正,但很少有研究承认黑人想象在这一过程中的证据。当前的设计规范将未来和推测定义为源于对科幻小说的狭隘看法,其中不包括黑人未来主义的观点。在本文中,我们扩展了设计规范,认为非洲未来主义、非洲未来主义女权主义和黑人女权主义等框架在设计对我们未来技术格局的想象中发挥了重要作用。我们为谁在设计中走向未来的更大讨论做出了贡献,提出了概念化设计的人和考虑设计社会影响的人之间的对话关系。
摘要。本文的目的是研究用户无法直接交互的触摸式用户界面控制的可用性和用户体验 (UX)。例如,用户通过遥控器上的触摸交互控制电视屏幕,或者汽车驾驶员使用触摸来控制方向盘上的中控台屏幕输入。基于一项研究有触觉标记和无触觉标记的触摸式交互的受试对象内控制实验,我们重复了可用性研究结果,即在触摸区域有触觉标记的情况下完成任务的速度明显快于没有触觉标记的情况。对于用户体验,带有触觉标记的触摸输入在实用质量和吸引力方面的评分更高。用于目标选择的用户界面动画的变化对用户体验没有显著影响,表明触觉反馈是决定用户体验的最重要因素。本文最后讨论了研究的重复如何成为以用户为中心的设计和开发过程的一部分,以应对由于技术变化而导致的研究过时的威胁。
摘要 商用飞机驾驶舱中的触摸屏输入具有潜在优势,包括易于使用、可修改和减轻重量。但是,对湍流的耐受性是其部署的挑战。为了更好地了解湍流对驾驶舱输入方法的影响,我们对三种输入方法的用户性能进行了比较研究——触摸、轨迹球(目前在商用飞机中使用)和旨在帮助手指稳定的触摸屏模板覆盖。在各种交互式任务和三个模拟湍流级别(无、低和高)下比较了这些输入方法。结果表明,随着振动的增加,性能下降,主观工作量增加。当精度要求较低(在所有振动下)时,基于触摸的交互比轨迹球更快,但对于更精确的指向,尤其是在高振动下,它的速度较慢且准确性较低。模板并没有改善触摸选择时间,尽管它确实减少了高振动下小目标的错误,但只有当手指抬起错误通过超时消除时才会发生这种情况。我们的工作提供了有关受湍流影响的任务类型以及在不同振动水平下表现最佳的输入机制的新信息。
摘要 商用飞机驾驶舱中的触摸屏输入具有潜在优势,包括易于使用、可修改和减轻重量。然而,对湍流的耐受性是其部署的挑战。为了更好地了解湍流对驾驶舱输入方法的影响,我们对三种输入方法的用户性能进行了比较研究——触摸、轨迹球(目前在商用飞机中使用)和旨在帮助手指稳定的触摸屏模板覆盖。在各种交互式任务和三种模拟湍流水平(无、低和高)下比较了这些输入方法。结果表明,随着振动的增加,性能下降,主观工作量增加。当精度要求较低时(在所有振动下),基于触摸的交互比轨迹球更快,但对于更精确的指向,尤其是在高振动下,它更慢且更不准确。模板没有改善触摸选择时间,尽管它确实减少了高振动下小目标的错误,但只有当手指抬起错误通过超时消除时才会发生。我们的工作为受湍流影响的任务类型以及在不同振动水平下表现最佳的输入机制提供了新的信息。
图1中的数据证明,当使用直接(标记的蛋白质)或半独立检测系统(Biotin –SA系统(恒定比率))时,HTRF准确确定PPI的亲和力(KD)的适用性。(1)Bruhns等。Blood(2009)113; 3716-3725
摘要 — 身体内的实际情绪体验可能很复杂,随着时间变化和不和谐情绪同时发展;实时响应以估计个人情绪的设备应该相应地发展。假设广义情绪存在于离散状态的模型无法将人类情绪的动态和个体性中固有的宝贵信息付诸实践。我们的多分辨率情绪自我报告程序允许根据压力-放松量表构建情绪标签,不仅可以区分情绪是什么,还可以区分情绪如何转变——例如,“充满希望但越来越紧张”与“充满希望并开始放松”。我们训练了基于被试的情境化个人经验的分层模型,以比较不同模态(大脑活动和物理键盘的按键力度)的情绪分类,然后在 F1 分数 = [0.44, 0.82](机会 F 1 = 0.22,σ = 0.01)下对分类性能进行基准测试,并检查高性能特征。值得注意的是,当在压力实际变化的体验背景下对情绪演变进行分类时,基于压力的按键力度特征被证明是更具信息量的模态,并且在考虑侵入性和易于收集和处理时更为方便。最后,我们展示了我们的 FEEL(力、脑电图和情绪标记)数据集,这是大脑活动和按键力度数据的集合,标记了在紧张的电子游戏过程中收集的自我报告情绪(N = 16),并开源供社区探索。