病毒序列的日益普及导致了许多优化的病毒基因组重建工具的出现。鉴于新工具的数量在稳步增加,识别能够在准确性和计算资源之间取得平衡的功能性和优化工具以及每种工具提供的功能变得非常复杂。在本文中,我们调查了用于人类病毒基因组重建的开源计算工具(包括流程),确定了这些工具之间的具体特性、特点、相似之处和不同之处。为了进行定量比较,我们基于病毒数据创建了一个开源重建基准。该基准测试是使用合成数据集和真实数据集执行的。对于前者,我们评估了使用具有模拟突变率、污染和线粒体 DNA 包含以及不同覆盖深度的不同人类病毒对重建过程的影响。我们还使用真实数据集评估了每个重建程序,以展示它们在现实场景中的表现。评估指标包括重建前后基因组之间的同一性、归一化压缩半距离和归一化相对压缩,以及重建基因组的长度、每个工具所花费的计算时间和资源的指标。该基准完全可重现,可在 https://github.com/viromelab/HVRS 免费获取。
探测纳米颗粒重新执行和聚合物纳米复合结构中的聚合物基质之间形成的区域的机械行为,称为“相间”,这是一个主要挑战,因为这些区域很难通过实验方法进行研究。在这里,我们准确地表征了聚合物纳米复合材料的异质机械行为,重点是通过纳米力学模拟和数值均质化技术的组合来关注聚合物/纳米芯的相互作用。最初,使用详细的原子分子动力学模拟研究了用二氧化硅纳米颗粒加固的玻璃状聚(乙烷)聚合物纳米复合材料的全局机械性能,均以1.9%和12.7%的硅胶体积分数。接下来,通过探测在平衡处纳米列列附近的聚合物原子的密度分布曲线来鉴定聚合物/二氧化硅相间的厚度。根据此厚度,将相互间隙细分以检查机械性能的位置依赖性变化。然后,使用连续力学和原子模拟,我们继续计算有效的Young模量和Poisson的聚合物/纳米颗粒间相的比例,作为距纳米颗粒距离的函数。在最后一步中,提出了一个反数值均质化模型,以根据比较标准与MD的数据进行比较标准来预测相间的机械性能。发现结果是可以接受的,这增加了准确有效地预测纳米结构材料中界面特性的可能性。
RNA分子由于细胞在细胞中的功能和调节作用而导致了有希望的治疗靶标。靶向RNA的药物发现中的计算建模为加快新型小分子化合物的发现提供了重要的机会。然而,与蛋白质靶向药物设计相比,该领域遇到了独特的挑战,这主要是由于实验数据的有限和当前模型无法充分解决RNA在配体识别过程中的构象灵活性。尽管存在这些挑战,但使用基于结构的方法或定量结构 - 活性关系(QSAR)模型成功地鉴定了涉及RNA的活跃化合物。本综述概述了建模RNA-MALL分子相互作用的最新进步,强调了计算方法在RNA靶向药物发现中的实际应用。此外,我们调查了现有的数据库,以分类核酸 - 小分子相互作用。随着对RNA-MALL分子相互作用的兴趣会增长并策划数据库扩大,该领域预计快速发展。新颖的计算模型有助于增强有效和选择性的小分子调节剂的识别,以满足治疗需求。
本报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,也不是巴特尔纪念研究所,或其任何雇员,对任何信息,设备,产物或程序披露或代表其使用的任何法律责任或责任都没有任何法律责任或责任,或者对其使用的准确性,完整性或有用性都不会侵犯私人权利。以此处参考任何特定的商业产品,流程或服务,商标,制造商或以其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或Battelle Memorial Institute的认可,建议或赞成。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
摘要以下项目涉及基于多感应刺激的积极情绪支持应用的建议。该项目的第一个目标是研究情绪与情绪之间的差异,关系和互动,试图了解情绪识别方法和引起刺激如何在情绪领域进行调整。这是构建旨在检测用户心情并随时间进行监控的系统的基本步骤,同时试图通过提出适当的多感官刺激来支持积极的情绪。因此,另外两个中间步骤至关重要:i)使用可穿戴设备和简短问卷结合使用的可穿戴设备来构建多式模式检测框架; ii)定义多种感官刺激应表现出哪些视听特征,以增强其积极的情绪支持效果,从而利用不同的学习模型。将在用户第一次访问系统时提交分析调查表。然后,进行了多模式情绪检测,并对当前的情绪和智能手机和可穿戴设备(例如环境,行为和生理数据)的数据进行了生态瞬时评估(EMA)。由于定义了用户的当前情绪,因此系统会自动选择适当的视听刺激,以提示如果需要的话,可以改善情绪。情绪支持会话后,将需要用户的反馈来提高系统的有效性,并确保为特定用户提供更好的刺激。案例研究将被视为了解该系统在实际应用中的功效。特别是,将开发一种汽车场景,在驾驶模拟过程中利用虚拟现实刺激。
背景:2型糖尿病会影响近3420万成年人,并且是美国第七大死亡原因。数字健康社区已成为为从事糖尿病自我管理(DSM)的个人提供社会支持的途径。对数字同伴互动和社交联系的分析可以改善我们对行为改变的因素的理解,这可以为个性化的DSM干预措施开发。目的:我们的目标是使用混合方法方法应用我们的方法来(1)表征DSM中特定于上下文特定社会影响模式的作用,并且(2)得出介入的介入目标,以增强个人参与DSM。方法:使用美国糖尿病协会支持DSM的同伴信息(n = 〜73,000个从2014年到2021年),(1)产生了一组标记的同伴相互作用集(n = 1501,用于美国糖尿病的n = 1501,通过手动学习模型,(2)用于Qualitiel dectie decter(2),(2)均具有Qualiit datired colditiper(2)整个模型(2),该模型(2)整个代码(2)整个代码效果(2)回顾性分析和(4)社交网络分析技术被用来描绘嵌入在同伴互动中的通信维度(内容和上下文)之间的大规模模式和关系。结果:从属关系模型表明,通过共享交互式沟通风格的演讲行为与社区用户接触与社区用户的参与有积极的联系。结论:在这项研究中,我们表征了社会影响在DSM中的作用,如大规模社交媒体数据集所示。我们的结果还表明,使用交互式通信风格的演讲行为(交流环境)表达患者报告的结果和进步主题(通信内容)时,患有2型糖尿病的用户更有可能在社区中参与社区。它表明了基于用户的上下文和与同行交流的结构更改形式进行有针对性的社交网络干预措施的潜力,这可以发挥社交影响来修改用户参与行为。对多组分数字干预措施的影响。
出于地貌理由放置了另一个可能的入侵地点,但是当人们认识到奥林巴斯蒙斯山顶附近的一些熔岩流也不一致[5]。mogi风格的分析模型用于检验[5]的假设,即这种不一致是由于Caldera Complex的东南部东南部的岩浆体的通货膨胀引起的,虽然这种岩浆系统是合理的,但观察到的不和谐模式可以更好地归因于East [3,6,6]。不幸的是,尽管这些最初的见解令人兴奋,并支持了山顶附近存在岩浆岩体的身体的观念,但可以从Mogi式的方法中推断出来的,因为该方法无法考虑关键元素,例如诸如大厦大厦的详细表面形态,岩浆身体的几何形状,是否表面故障(是否
原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
(c)“直接交付电力”是指符合以下任何标准的电力:该设施在华盛顿的安排点或完全位于华盛顿的平衡权限区域内具有倾斜度的第一点;电力计划通过连续的物理变速器路径从特定的来源到华盛顿的调度点或完全位于华盛顿的平衡权限区域,从设施在平衡机构中的互连,该机构位于华盛顿调度点或电力系统的平衡机构中;或者有一项协议,将电力从设施中动态转移到华盛顿的整个位置或完全位于华盛顿的权限区域的协议;否则该设施在集中电力市场内的相互联系的第一点,该设施的电力归因于集中电力市场。