巴塞罗那,2025年3月3日。- 移动世界首都巴塞罗那(Mwcapital)和Caixabank在MWC25的公民中促进数据计算和人工智能的潜力。通过教育和互动的体验,两个实体使用户能够对其个人碳足迹进行大致计算,并了解他们可以在日常生活中应用的变化,以实现更环保的生活方式。
第1,2节研究确定性计算。计算的非确定性方面(输入,互动,错误,随机化等)在高级理论和实践中至关重要且具有挑战性。将它们定义为确定性计算的扩展很简单。后者在概念上更简单,需要精心设计的模型才能进行定义。如果我们需要对所有必需的资源进行精确度量,那么这些模型可能会很复杂。但是,如果我们只需要定义可计算的内容并获得所需资源的非常粗糙的幅度,则所有合理的模型都相同,即使是最简单的模型。我们将非常关注这个令人惊讶和重要的事实。最简单的模型对于证明负面结果最有用,并且最有用的模型可用于积极结果。我们从所有模型共同的术语开始,逐渐使其更具体地针对我们实际研究的术语。我们表示计算为图:边缘反映了节点(事件)之间的各种关系。节点,边缘具有属性:标签,状态,颜色,参数等。(影响计算或其分析)。因果边缘从每个事件运行到其出现或属性所必需的所有事件。它们形成有向无环图(尽管可以人为地添加循环以标记计算的外部输入部分)。我们将仅研究同步计算。他们的节点具有时间参数。它反映了逻辑步骤,不一定是任何物理时钟的精确值。其他称为平行。因果边缘仅跨越短(通常为\ leq 3时刻)时间间隔。节点原因中的一个事件称为其父。指针边缘将每个事件的父级连接到其所有其他可能的原因,并反映允许同时事件相互作用并具有关节效应的连接。用相同来源的指针具有不同的标签。给定时间的事件/边缘的(标记)子图是模型的即时内存配置。每种非末端配置都有可能会更改的活动节点/边缘。在计算的任何步骤中只有一个小活动区域的模型都是顺序的。
会话描述:随着半导体技术接近缩小范围的局限性,对传统冯·诺伊曼建筑的替代方案的需求也会增长。神经形态计算,受人脑的结构和功能的启发,是一种有希望的解决方案,尤其是用于开发智能系统,例如视觉处理器,听觉系统和机器人运动。设备技术,电路设计和计算建模的最新突破使联合研究人员来自不同的领域,包括电子,计算机科学,神经科学,材料科学和设备制造。这些相互交流的旨在为人工智能(AI)应用(AI)应用和神经形态硬件创建更有效的电子系统,而与传统CMOS相比,它更准确地复制了生物神经网络。将备忘录集成到设计工具包中有望将进步推向摩尔定律,从而开发可以感知的智能,多功能系统,
神经形态工程旨在通过模仿大脑的有效处理来推动计算,其中数据被编码为异步时间事件。这消除了对同步时钟的需求,并在不存在数据时最小化功耗。但是,神经形态算法的许多基准主要集中在空间特征上,忽略了大多数基于序列任务的时间动力学。此差距可能导致评估无法完全捕获神经形态系统的独特优势和特征。在本文中,我们提出了一种旨在基准神经形态学习系统的时间结构化数据集。Neuromorse将英语的前50个单词转换为暂时的摩尔斯密码峰序列。尽管仅使用两个输入尖峰通道来用于摩尔斯点和破折号,但通过数据中的时间模式对复杂的信息进行了编码。所提出的基准在多个时间尺度上包含特征层次结构,这些时间尺度测试了神经形态算法将输入模式分解为空间和时间层次结构的能力。我们证明,使用线性分类器对我们的训练集进行挑战,并且使用常规方法很难识别测试集中的关键字。NeuroMorse数据集可在10.5281/Zenodo.12702379上获得,我们的随附代码在https://github.com/jc427648/neuromorse上获得。
该教师发展计划(FDP)提供了量子计算的全面概述,涵盖其基本原理,新兴趋势和实际应用。该计划的结构是一系列的讲座和动手会议,为教育者和研究人员渴望了解量子计算的理论和实际方面。大学,博士后研究人员,博士学位学生和在盟军地区工作的行业专业人员的教职员工有资格申请该计划。主题是根据AICTE于2024年12月发布的Qut 01和QT 01和QT 05模型课程的设计。
抽象物理储层计算(RC)代表一个计算框架,可利用可编程物质的信息处理能力,从而实现具有快速学习和低训练成本的能源有效神经形态硬件。尽管自组织的回忆网络已被证明是物理储层,能够从时空输入信号中提取相关特征,但多发纳米网络为计算实施的新型策略开辟了可能性。在这项工作中,我们报告了Materia RC的实施策略,并具有自组装的回忆网络。除了显示自组织纳米线网络的时空信息处理能力外,我们还通过模拟显示,新兴的集体动力学允许RC非常规实现,其中相同的电极可以用作储层输入和输出。通过在数字识别任务上比较不同的实施策略,模拟表明,非常规实现允许降低硬件复杂性,而无需限制计算能力,从而为在Materia计算中充分利用的新见解提供了对神经形态系统合理定义的全面优势。
与矩阵乘法的算法问题有关[10; 29; 34],当代工作的显着部分涉及基本操作(例如张量产品[6],Kronecker产品[8],直接总和[29; 31]和许多其他[7; 30]。该问题的对称对准涉及多项式,而它们的自然代数操作是总和和产物。的确,这些总和的警告等级得到了广泛的研究[12; 24; 36],一个特定的众所周知的猜想认为,Waring等级的添加性是具有不连接变量家族的多项式的总和[4],但事实证明是错误的[33]。在产品下,警告等级的行为如何?这个问题似乎并没有吸引与总和相比的任何关注,但是以下众所周知的结果可能是一个很好的起点。
抽象物理储层计算(RC)代表一个计算框架,可利用可编程物质的信息处理能力,从而实现具有快速学习和低训练成本的能源有效神经形态硬件。尽管自组织的回忆网络已被证明是物理储层,能够从时空输入信号中提取相关特征,但多发纳米网络为计算实施的新型策略开辟了可能性。在这项工作中,我们报告了Materia RC的实施策略,并具有自组装的回忆网络。除了显示自组织纳米线网络的时空信息处理能力外,我们还通过模拟显示,新兴的集体动力学允许RC非常规实现,其中相同的电极可以用作储层输入和输出。通过在数字识别任务上比较不同的实施策略,模拟表明,非常规实现允许降低硬件复杂性,而无需限制计算能力,从而为在Materia计算中充分利用的新见解提供了对神经形态系统合理定义的全面优势。
•具有语义安全性的公共钥匙加密•具有存在性不可原谅的安全性的公共键签名•带有模拟安全性的遗忘转移和MPC(无量子通信/长期量子内存)•P = NP量子敏感或不敏感,没有黑盒攻击“ P = np g = np g = np g = np gastum-natum cantum countum cancous”
沿海地区在这项研究中表现出更强的非洲混合物,而北部也门也门地区的北部地区表明与阿拉伯和黎凡特有更紧密的遗传关系。在也门漫长而持续的内战中,这项研究发现,沿海和内陆分裂的历史基因组起源不同,这与当前冲突的划分线相处。