a。 80%的互联网用户在线寻找健康信息b。 Medscape的专业网站Emedicine提供了所有主要疾病及其管理的专业摘要。收集,例如最新和c。 OVID提供了综合访问该机构d的期刊和书籍的访问权限。选择订阅。e。电子病历(EMR)有可能成为许多信息的服务点学习工具。f。在患者护理的背景下,EMR支持“恰好在 - 时间学习”。g。一些EMR产品支持第三方知识产品的界面。一个示例Infobuttons提供了一个信息系统(例如EMR)到提供相关信息的其他资源的特定于上下文特定链接。
摘要为了揭示神经性疼痛经历的复杂性,研究人员试图使用脑电图(EEG)和皮肤电导(SC)鉴定可靠的疼痛特征(生物标志物)。尽管如此,它们用作设计个性化疗法的临床帮助仍然很少,并且患者处方常见和效率低下的止痛药。为了满足这种需求,新型的非药理干预措施,例如经皮神经刺激(TENS),通过神经调节和虚拟现实(VR)激活外周痛缓解,以调节患者的注意力。但是,所有当前治疗方法都遭受患者自我报告的疼痛强度的固有偏见,具体取决于其倾向和耐受性,以及未考虑疼痛发作的时间的未明确,预定义的会话时间表。在这里,我们显示了一个脑部计算机界面(BCI),该界面检测到来自EEG的神经性疼痛的实时神经生理学特征,并因此触发了结合TENS和VR的多感官干预。验证多感官干预有效减轻了实验性诱发的疼痛后,通过电力诱导疼痛,用13个健康受试者对BCI进行了测试,并在实时解码疼痛中显示了82%的回忆。然后用八名在线疼痛精度达到75%的神经性患者进行了验证,因此释放了在神经性患者疼痛感知中引起显着降低(50%NPSI评分)的干预措施。这为使用完全便携式技术的个性化,数据驱动的疼痛疗法铺平了道路。我们的结果证明了从客观神经生理学信号中实时疼痛检测的可行性,以及VR和TEN的触发组合的有效性以减轻神经性疼痛。
摘要 目前,一系列问题开始阻碍技术进步,对计算的标准性质提出了挑战。为解决这些问题,提出的策略之一是开发新的受大脑启发的处理方法和技术,并将其应用于广泛的应用场景。这是一项极具挑战性的任务,需要多个学科的研究人员齐心协力,同时共同设计处理方法、支持计算架构及其底层技术。《神经形态计算与工程》(NCE)杂志的推出是为了支持这个新社区的努力,并提供一个论坛和资料库来展示和讨论其最新进展。通过与编辑团队同事的密切合作,NCE 的范围和特点已被设计为确保它服务于学术界和工业界日益壮大的跨学科和充满活力的社区。
可穿戴设备是一种快速增长的技术,对社会和经济的个人医疗保健产生了影响。由于传感器和分布式网络中传感器的广泛影响,功耗,处理速度和系统适应性对于将来的智能可穿戴设备至关重要。对如何在智能传感器中将计算到边缘的视觉和预测已经开始,并渴望提供自适应的极端边缘计算。在这里,我们提供了针对智能可穿戴设备的硬件和理论解决方案的整体视图,可以为这个普遍的计算时代提供指导。我们为在可穿戴传感器的神经形态计算技术中持续学习的生物合理模型提出了各种解决方案。为了设想这个概念,我们提供了一个系统的概述,其中预期在神经形态平台中可穿戴传感器的潜在低功率和低潜伏期情景。我们依次描述了利用互补金属氧化物半导体(CMOS)和新兴记忆技术(例如MEMRISTIVE设备)的神经形态处理器的重要潜在景观。此外,我们根据足迹,功耗,延迟和数据大小来评估可穿戴设备内边缘计算的要求。我们还研究了神经形态计算硬件,算法和设备以外的挑战,这些挑战可能阻碍智能可穿戴设备中自适应边缘计算的增强。
地震地球物理学在很大程度上依赖于地下建模,而地下建模基于对现场收集数据的数值分析。在生成一致的地下模型之前,对典型地震实验中产生的大量数据进行计算处理也需要同样大量的时间。电磁油藏数据,如 CSEM(受控源电磁)、岩石物理技术,如多井的电阻率和磁共振,以及工程优化问题,如油藏通量模拟器、井场设计和石油产量最大化,也需要强大的计算设备进行分析。另一方面,在过去十年中,量子计算机的发展取得了很大进展:机器利用量子力学定律比传统计算机更快地解决困难的计算问题。这种进步的一个具体例子就是所谓的量子霸权,最近已经使用专用量子计算机进行了演示 [1-3]。地球科学领域和相关行业(如碳氢化合物行业)有望从量子计算带来的进步中获益。目前,不同的量子技术和计算模型正在不断发展。IBM、谷歌和英特尔等巨头公司正在开发基于超导技术的量子计算机 [4]。其他公司也在投入大量精力构建基于约瑟夫森结的功能齐全的量子计算机,比如北美的 Rigetti,而美国的 IonQ 和奥地利的 AQT 则致力于开发基于捕获离子的计算机 [5]。加拿大公司 D-Wave 是量子退火计算模型的领先者 [6],该公司已经开始交易量子机器,加拿大的 Xanadu 也在提供对其光子量子计算机的云端访问 [7,8]。
半个多世纪以来,蛋白质折叠一直是最困难的问题之一,随机热运动导致构象变化,从而导致能量下降到天然结构,这是漏斗状能量景观中捕获的原理。未折叠的多肽具有广泛的可能构象。由于潜在构象随链长呈指数增长,搜索问题对于经典计算机来说变得难以解决。到目前为止,有理论和实验证据表明,使用量子退火、VQE 和 QAOA 等量子计算方法解决此类优化问题具有优势。虽然谷歌的 DeepMind-AlphaFold 已经取得了很大成就,但我们可以通过量子方法走得更远。在这里,我们展示了如何使用变分量子特征求解器预测蛋白质结构以及 RNA 折叠,并使用条件风险值 (CVaR) 期望值来解决问题并找到最小配置能量,我们的任务是确定蛋白质的最小能量结构。蛋白质的结构经过优化以降低能量。还要确保满足所有物理约束,并将蛋白质折叠问题编码为量子比特算子。
1. 算盘(公元前 2500 年 - 公元前):这是一种手持设备,由串在框架中的杆上的珠子制成。杆对应于数字的位置,珠子对应于数字。2. 纳皮尔骨算盘(公元前 2500 年):这是由约翰·纳皮尔(1550 - 1617)发明的。它由带有适当标记的小杆组成。它是一种机械计算辅助工具,由九根这样的杆(称为骨)组成,每根代表 1 到 9 的数字。他还发明了对数,通过执行加法和减法可以进行除法和乘法。 3. 计算尺(1600 年)——威廉·奥特雷德(1575 - 660):他于 1622 年发明了计算尺,但于 1632 年公布了这一发明。计算尺由表示数字对数的标记规则组成,还允许进行指数、三角函数等计算。4. 帕斯卡机械计算器(1600 年)或数字轮计算器:布莱斯·帕斯卡(1623 -1664 年)于 1642 年发明了第一台加法机,称为 Pascaline。黄铜矩形盒使用八个可移动的刻度盘,以 10 为基数对八个数字进行加法和求和。它可以以前闻所未闻的速度执行所有四种算术运算。 5. 莱布尼茨机械乘法器(1600 年):1694 年,戈特弗里德·威廉·冯·莱布尼茨 (1646 年 -1716 年) 改进了帕斯卡林乘法器,发明了一种可以使用刻度盘和齿轮系统进行乘法的机器。
我们建议使用二维 Penning 阱阵列作为量子模拟和量子计算的可扩展平台,以捕获原子离子。这种方法涉及将定义静态电四极子位置的微结构电极阵列放置在磁场中,每个位置捕获单个离子并通过库仑相互作用与相邻离子耦合。我们求解此类阵列中离子运动的正常模式,并推导出即使在存在陷阱缺陷的情况下也能实现稳定运动的广义多离子不变定理。我们使用这些技术来研究在固定离子晶格中进行量子模拟和量子计算的可行性。在均匀阵列中,我们表明可以实现足够密集的阵列,轴向、磁控管和回旋加速器运动表现出离子间偶极耦合,其速率明显高于预期的退相干。通过添加激光场,这些可以实现可调范围的相互作用自旋汉密尔顿量。我们还展示了局部电位控制如何隔离固定阵列中的少量离子,并可用于实现高保真门。使用静态捕获场意味着我们的方法不受系统尺寸增加时的功率要求限制,从而消除了标准射频陷阱中存在的重大缩放挑战。因此,这里提供的架构和方法似乎为捕获离子量子计算开辟了一条道路,以实现容错规模的设备。
存储容量、速度和 RAM 之间的相互作用是一种微妙的平衡,它决定了计算机的整体性能。具有充足、快速存储和足够 RAM 的系统可以高效处理更多应用程序、更快地处理任务并提供更流畅的计算体验。这种协同作用对于寻求无缝、无延迟的日常计算任务体验的普通用户和依靠系统速度和容量来管理工作负载和执行苛刻操作的专业人士来说都至关重要。根据使用要求和工作习惯了解和选择适当的规格可以极大地影响生产力和享受,标志着一台运行缓慢的计算机和一台高性能计算机之间的区别。
加利福尼亚大学伯克利工程学院2003年秋季第40周的第8周摘要(通过Farhana Sheikh)电路分析涉及非线性元素§§由于PN连接在本质上是非线性的,因此由PN连接分析产生的电路元素很复杂:例如。i d = i s [exp(qv d /kt)-1]§我们通常通过采用简化的非线性设备模型来简化分析(例如< /div>理想的二极管模型,大信号二极管模型)§图形方法还可以帮助用非线性元素完美整流器模型(理想二极管)分析电路的I-V特征,用于完美的直流或理想二极管的I-V特征。如果相对于所示的参考方向跨二极管施加了负电压,则二极管不会导致任何电流,并且二极管的行为作为开路。二极管被称为“反向偏见”。如果将正电流应用于二极管相对于参考方向,则二极管的行为作为短路,并通过零电压下降的任何电流。
