,比该地区最大可信事件小得多。但是,由于地震中断了旧金山正在进行的世界职业棒球大赛,因此引起了全世界的关注。此外,虽然对州公路系统的整体损坏很小,但一些重要桥梁却遭到严重损坏。这些事实,以及两座桥梁上不幸的人员伤亡,使得加州运输部 (Caltrans) 在地震后成为批评的对象。一些人认为,加州运输部疏忽大意,允许公众使用抗震性能不足的州立桥梁。加州运输部是否应该知道有哪些桥梁无法抵御大地震?加州运输部是否应该更换所有抗震性能不足的桥梁?这些问题促使州长 Deukmejian 成立了一个调查委员会,以确定桥梁损坏的原因。委员会花了几个月的时间举行听证会,以确定加州运输部在地震前制定的抗震政策。 1990 年 5 月 31 日,委员会发布了报告《与时间竞争》(Thiel,1990 年)。他们发现,加州运输部在改进新桥的抗震设计程序方面做得很好。他们认为,桥梁损坏的主要原因是加州运输部的抗震加固计划资金不足。他们建议加州运输部增加抗震加固计划的资金,资助额外的抗震研究,利用更多最先进的解决方案
1.1 目的: 第 7 段:更新部门标题。增加一段说明在 PDM 中提供了有关设计例外流程的附加信息流程。第 2 章 交通规划 1.1 目的:表 2.1:修订表 2.1 第 3 章 环境分析、清理和缓解发起人:更新部门标题。第 4 章 设计程序 4.3 施工图 4.3.2 绘图标准。第 4 段:细微文字更改。4.3.6 封面页。第 1 段:细微文字更改。4.3.7 一般说明表。第 1 段:细微文字更改,增加指向公共道路信息工具的链接。4.3.8 工程量汇总表。第 1 段:增加指向投标项目主清单 (BIML) 的链接 4.3.9 典型路段。第 2 段:细微文字更改,增加关于如何处理可变条件典型路段的句子。4.3.10 几何控制。第 1 段:删除包含转角的要求并将“尺寸”更改为“标签”。4.3.11 路面平面图和剖面图。添加了一段以指定从施工中心线到路缘表面的尺寸定义道路宽度。第 2 段:文本小幅更改。第 3 段:小幅编辑。4.3.17 横截面图。第 1 段:添加文本以包含中间定义的水平和垂直偏转点处的额外横截面。第 3 段:小幅编辑。4.5 调查和数据采集发起人:更新了部门标题。4.5.2 控制点和基准点。
简介 许多方法已用于设计飞机自动驾驶仪。Taha 等人。(2009) 状态反馈、极点配置、滞后控制器和模型参考自适应控制技术已用于爬升率自动驾驶仪的设计。No 等人。(2006) 经典根轨迹和波特频率法用于设计高度稳定、速度和飞行路径角自动驾驶仪。此外,零努力脱靶概念也被有效用于提出适用于任意轨迹跟踪控制问题的制导律。在所提出的制导方案中,命令以速度、飞行路径和航向角的形式给出,以便它们可以轻松地与现有的控制配置相匹配,Giampiero 等人。(2007) 编队控制的设计基于内环和外环结构。平面外环制导律采用反馈线性化设计,而垂直通道的外环采用补偿器设计。内环线性控制器也是使用经典补偿方法设计的,Taha 等人。(2009) 设计了一个监督控制系统来管理不同自动驾驶仪的接合和脱离,并将命令输入传递给它们,使飞机实现所需的轨迹。在本文中,使用离散时间的模型跟踪技术设计了不同的自动驾驶仪。选择这些自动驾驶仪是为了将它们用于制导系统,以促使飞机在横向规划中实现特定的飞行路径。这些自动驾驶仪包括倾斜角、航向和水平环路自动驾驶仪。每个自动驾驶仪都将在飞机非线性模拟程序 (Brain, 1992) 上进行模拟,以说明飞机的响应并检查其实现平稳和可接受的机动的能力。本文使用了飞行条件 3 下的 Delta Aircraft 数据 (Etkin, 1982)。自动驾驶仪设计程序
潜艇系统设计早期阶段的运行分析 (DOI 编号:10.3940/rina.ijme.2015.a1.312) M Nordin,瑞典国防研究局和瑞典查尔姆斯理工大学 摘要 本文介绍了一种新的运行分析 (OA) 方法,作为海军综合复杂系统 (NICS) 的基于仿真的设计 (SBD) 的工具,在此应用于潜艇领域。开发并描述了一种运行分析模型。设计过程的第一步是识别和收集来自客户和利益相关者的需求,从中可以推断出需求并以有组织的方式设计,即需求阐明。在初始设计期间尽早评估每个需求对设计的利弊非常重要。因此,OA 模型必须能够评估合成船舶中汇总的需求,例如初始概念,即 Play-Cards,作为设计第一组需求的功能域中潜艇概念的表示,并建立其能力度量 (MoC) 和有效性度量 (MoE)。这项工作产生了一种用于潜艇设计的 OA 模型,可用于潜艇系统的开发和生命周期评估。将 OA 集成到设计过程中的目的是探索设计空间,并在早期阶段不仅评估技术解决方案和成本,还评估系统效果,从而找到并描述合适的设计空间。与专注于技术性能和成本的传统基本船舶设计程序相比,这将产生更快的知识增长。通过在初始设计期间使用 OA 模型作为集成工具,我们不仅可以达到对设计对象的更高水平的了解,而且还可以实现对需求以及推导和设计要求的更高精确度。这种方法还邀请客户参与集成项目团队的框架。 1. 引言
摘要 本学术研究旨在扩展对计算机系统中逻辑推理的理解。随着应用程序的不断创新,现代技术创新创造了计算机软件,使人们只需单击按钮即可完成日常工作。在计算机工程领域,获得逻辑推理能力对于应变和建立技术解决方案至关重要。通过技术的创新和进步,应用程序开发人员继续为进步伸出了轻松之手。这种轻松之手通过提供便利的应用程序来标记。获得逻辑应用程序的组件是传感器、粗糙集理论、空间图像和人工智能。 关键词:逻辑、计算机系统、应用程序、进步。 1. 简介 在不断的技术进步和进步中,世界各地目前都需要多样化、富有创造力和聪明的问题解决者。计算机工程领域培训个人帮助构建和创新计算机的不同组件。这门工程学科旨在确保计算机的所有各种元素能够很好地结合在一起,并有助于提高用户的工作效率 [1]。根据计算机工程,逻辑性是一种创建推理来证明另一个陈述的能力。提高逻辑推理能力可以帮助人们在这个工程领域取得成功,因为在设计程序时,逻辑通常用于理解和正确使用符号语言 [2]。对于所有职业来说,逻辑思维能力都被认为对工作环境至关重要。任何职位的员工都可能被要求找到某些问题的解决方案,而这些问题可能是他们专业领域与生俱来的;因此,工作场所中逻辑思维技能利用得越多,员工决策过程的生产力就越高,错误就越少 [3]。但在以逻辑技能为目标的计算机系统的帮助下,用户可以准确地将交给他们的问题或一组
1. 揭示使用 FPGA 的设计方法。2. 深入了解故障模型。3. 了解用于故障检测的测试模式生成技术。4. 设计时序电路中的故障诊断。5. 通过案例研究了解流程设计。单元 - I 可编程逻辑器件:可编程逻辑器件的概念、SPLD、PAL 器件、PLA 器件、GAL 器件、CPLD 架构、FPGA FPGA 技术、架构、virtex CLB 和切片、FPGA 编程技术、Xilinx XC2000、XC3000、XC4000 架构、Actel ACT1、ACT2 和 ACT3 架构。 [教材-1] 第二单元 用状态图和状态表分析和推导时钟时序电路:时序奇偶校验器、信号跟踪和时序图分析-状态表和状态图-时序电路的通用模型、序列检测器的设计、更复杂的设计问题、状态图构建指南、串行数据转换、字母数字状态图符号。多时钟时序电路的需求和设计策略。[教材-2] 第三单元 时序电路设计:时序电路的设计程序-设计示例、代码转换器、迭代电路的设计、比较器的设计、控制器 (FSM) - 亚稳态、同步、FSM 问题、流水线资源共享、使用 FPGA 的时序电路设计、时序电路的仿真和测试、计算机辅助设计概述。 [教材-2] 第四单元故障建模和测试模式生成:逻辑故障模型、故障检测和冗余、故障等效性和故障定位、故障主导性、单个故障卡住模型、多个故障卡住模型、桥接故障模型。通过常规方法、路径敏感化技术、布尔差分法、KOHAVI 算法、测试算法-D 算法、随机测试、转换计数测试、签名分析和测试桥接故障对组合电路进行故障诊断。[教材-3 和参考文献 1] 第五单元时序电路中的故障诊断:电路测试方法、转换检查方法、状态识别和故障检测实验、机器识别、故障检测实验设计。[参考文献 3]
中型和长期储能系统有望在朝着由可再生能源提供动力的电网的过渡中起关键作用。ACAE是一种有前途的解决方案,能够分别处理数百个MW和MWH的功率和能量等级。ACAE的一个挑战是在随着空气储存的压力发生变化时,在系统中遇到的条件范围内实现了压缩机中所需的高效操作。在本文中,设计了面向应用程序的轴向流压缩机,旨在在整个操作范围内有效地操作,同时还将性能预测与实用的压缩机几何形状相关联。已经实现了基于Inviscid的两步设计方法,已实现了轴对称流条件,导致流track,叶片行几何形状和压缩机性能图。压缩机模型被整合到ACAES模型中,包括两个压缩线轴,两个具有预热的膨胀阶段,恒定体积的高压存储在5.5至7.7 MPa之间以及两个独立的热量储能单元。现有的ACAE文献要么忽略瞬态外部设计操作或使用通用数值相关性(与特定几何相关),但本文的关键新颖性是将涡轮机械设计详细的设计方法应用于ACAE。最后,建议对其他组件进行类似的审查(即扩展器,热交换器和TES单位),请记住ACAE的独特操作要求。结果表明,设计的压缩机需要在两个线轴上进行33个阶段,并且能够在存储压力范围内有效地操作,这表明,如果将面向应用的设计程序应用于压缩机,则不会阻止ACAES达到70%的圆形效率,从而输出35MW的35MW,以达到约15 h。重要的是,通过减少中冷器的数量来满足在较高温度下保存热量的特定ACAE要求。这项工作是消除普遍误解的重要一步,即可以在典型的ACAE设计中轻松地使用现成的组件。
由于大量射频 (RF) 和微波 (MW) 应用,高频电路设计领域正受到工业界的广泛关注。改进的半导体器件使得高速数字和模拟系统得以广泛应用,如无线通信、全球定位、雷达以及相关的电气和计算机工程学科。这种兴趣转化为对具有全面高频电路设计原理知识的工程师的强烈需求。然而,对于学生、专业工程师甚至教授这门课程的教师来说,存在一个普遍的问题。现有的大多数教科书似乎针对两类不同的受众:A) 具有广泛理论背景的高级研究生水平人群,和 B) 对数学和物理严谨性不感兴趣的技术人员。因此,RF 电路设计以两种截然不同的形式呈现。对于高级学生来说,进入该领域通常是通过电磁场方法,而对于技术人员来说,嵌入在基尔霍夫定律中的基本电路方面是首选方法。这两种方法都很难充分解决高频设计原理的理论和实际问题。基本电路方法缺乏或只是表面上涵盖了电流和电压的波动性质,而电流和电压的反射和传输特性是射频电路行为不可或缺的要素。电磁场方法当然涵盖了波导和传输线方面,但远远没有触及设计高频放大器、振荡器和混频器电路的重要方面。这本教科书的目标是以一种方式开发射频电路设计方面,以便在不采用电磁场方法的情况下明确传输线原理的必要性。因此,除了大多数学院和大学提供的场和波一年级本科物理课程外,不需要任何电磁背景。具备基本电路理论知识和/或微电子学知识的学生可以使用本书,并涵盖从传输和微带线的基本原理到各种高频电路设计程序的整个范围。冗长的数学推导要么被放到附录中,要么放在与正文分开的例子中。这样可以省略一些枯燥的理论细节,从而将重点放在主要概念上。为了接受提供高水平设计体验的挑战,我们提供了许多例子,这些例子详细讨论了各种设计方法的哲学和复杂性,在许多情况下,这些例子长达数页。
作者:Matthew Speicher 博士和 John Harris 博士实施基于性能的抗震设计 (PBSD) 程序来评估现有建筑引起了人们对使用类似方法设计新建筑的兴趣。使用这些程序的优势在于,设计师可以超越传统设计的更多规定性要求,并在预期性能和设计过程之间建立更直接的联系(即,性能目标在前期明确定义)。这使得工程师可以轻松地将预期性能传达给客户,并在需要时实现超越规范性能的设计目标。然而,大约十年前,随着 PBSD 在实践中越来越受欢迎,关于新建筑抗震设计标准与现有建筑抗震评估之间关系的公开信息非常有限。因此,一些工程师担心现有建筑标准过于保守,在利用现有建筑标准进行新建筑设计时,可能会导致对现有建筑进行不必要的昂贵改造或对新建筑进行不必要的昂贵设计。在《支持全面实施基于性能的抗震设计所需的研究》(NIST 2009)和《ASCE 41 或建筑抗震修复展望》(SEAONC 2010)中指出了了解这种关系的必要性。因此,美国国家标准与技术研究所 (NIST) 开始了一项研究计划,以帮助弥合理解上的差距并解决采用 PBSD 评估现有建筑和设计新建筑所面临的挑战。本系列的第 1 部分(结构,2021 年 10 月)讨论了基于性能的设计程序的相关历史,并对基于性能的方法和传统设计方法进行了比较。NIST 的四部分研究《新钢结构建筑第一代基于性能的抗震设计方法评估》调查了四种钢结构抗震系统 (SFRS)(Harris 2015a、2015b、2015c 和 Speicher,2020 年)。使用美国土木工程师学会的 ASCE 7:建筑物和其他结构的最低设计荷载设计了几座原型建筑,然后使用 ASCE 41:现有建筑的抗震评估和改造中的规定进行评估。结果表明,在许多情况下,按照 ASCE 7 要求设计的建筑没有通过 ASCE 41 中的验收标准,因此需要进一步完善 ASCE 41 中的 PBSD 规定,以符合更符合常识的结果。
为有效控制声场提供了新途径。[1–4] 除了实现负折射率、[5] 超透镜、[6,7] 全息图[8] 和声学斗篷之外,[9] 最近的进展还包括开发非互易系统、[10] 拓扑绝缘体、[11,12] 非线性、[13] 可调、[14] 编码[15] 和可编程超表面。[16] 声学超表面也被探索为模拟计算的潜在平台[17],计算机科学和人工智能的进步促进了设计程序,以实现超材料和超表面的理想特性。[18–21] 超材料也可用作探索量子概念类比的平台,如霍尔效应[22,23] 自旋特性、[24–27] skyrmions[28] 和旋转电子学。 [29] 声学超材料领域的一个发展中的分支致力于实现新型隔音系统。[30] 城市噪音污染日益严重是影响全球健康和生态环境的危险趋势之一。[31–35] 解决这个问题需要开发新的方法和材料,以实现宽带被动隔音。传统使用的系统通常以笨重的结构为代表,对建筑物和建筑物施加了严格的工程限制。[36] 噪音减轻的频率范围必须与所用材料的质量和体积相结合。此外,通风或光学透明度等一些关键特性通常与此类系统不相容。与传统的质量密度定律不同,超材料中声音的反射和衰减主要依赖于结构元素的周期性和形状,而不是它们的材料特性。超材料的一个重要选择是可以实现允许空气流动的结构。 [37–41] 各种设计包括穿孔膜、[42,43] 空间卷绕结构、[44–48] 和元笼 [49–51] 已被提出。尽管如此,尽管可实现的物理效应众多,声学超材料却很少在现实生活中得到应用。这些结构通常设计复杂,操作范围狭窄。在本文中,我们提出了一种隔音通风元室,允许光线进入内部区域。该室设计简单,便于制造和组装。同时,对材料的要求