这项工作在头部(VIH)框架中提出了一种新颖的声音,该框架集成了大型语言模型(LLM)和语义理解的力量,以增强复杂环境中的机器人导航和互动。我们的系统从战略上结合了GPT和Gemini Power LLM作为加强学习(RL)循环中的演员和评论家组成部分,以进行连续学习和适应。vih采用了由Azure AI搜索提供动力的复杂语义搜索机制,使用户可以通过自然语言查询与系统进行交互。为了确保安全并解决潜在的LLM限制,该系统将增强学习与人类反馈(RLHF)组件结合在一起,仅在必要时才触发。这种混合方法可带来令人印象深刻的结果,达到超过94.54%的成功率,超过了既定的基准。最重要的是,VIH框架提供了模块化可扩展的体系结构。通过简单地修改环境,该系统展示了适应各种应用域的潜力。这项研究为认知机器人技术领域提供了重大进步,为能够在现实世界情景下能够复杂的推理和决策制定的智能自治系统铺平了道路,这使我们更接近实现人工通用情报。
强化学习(RL)可以将语言模型与非不同的奖励信号(例如人类偏好)相结合。但是,这些奖励信号的稀疏性引起了一个重大挑战 - 通常,整个输出只有一个奖励。这种奖励的稀疏性会导致学习效率低下和不稳定的学习。为了应对这一挑战,我们的论文介绍了一个新颖的框架,该框架利用大型语言模型(LLM)的批评能力在RL培训期间产生中间步骤奖励。我们的方法将一个循环模型与批评语言模型配对,该模型可为策略输出的每个部分提供反馈。然后将此反馈转换为可用于指导RL训练过程的令牌或跨度奖励。我们在两个不同的设置下投资了这种方法:一种政策模型较小,并与更强大的评论家模型配对,而单一语言模型则履行两个角色的另一个。我们评估了三个文本生成任务的方法:情感控制,语言模型排毒和摘要。的结果表明,在自动评估和人类评估的支持下,纳入了人造的内在奖励可以显着提高样本效率和策略模型的整体绩效。该代码可在Google Research Github *下获得。
摘要 本文提出了一种基于现代深度强化学习的微电网多时间尺度协调运行方法。考虑到不同储能设备的互补特性,所提出的方法通过引入分层的两阶段调度模型实现了电池和超级电容器的多时间尺度协调。第一阶段使用每小时预测数据做出初步决策,而不考虑不确定性,以最小化运营成本。第二阶段旨在为第一阶段的决策生成纠正措施,以补偿实时可再生能源发电波动。第一阶段被表述为非凸确定性优化问题,而第二阶段被建模为马尔可夫决策过程,通过熵正则化的深度强化学习方法即软演员-评论家来求解。软演员-评论家方法可以有效地解决探索-利用困境并抑制变化。这提高了决策的鲁棒性。仿真结果表明,可以在两个阶段使用不同类型的储能设备来实现多时间尺度的协调运行。证明了所提方法的有效性。关键词:微电网运行,混合储能系统,深度强化学习
© 作者 2022。开放获取。本文根据知识共享署名 4.0 国际许可获得许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信用,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。