EANM、SNMMI 和 IAEA 联合支持指南:如何建立治疗诊断中心 Ken Herrmann 1 、Luca Giovanella 2 、Andrea Santos 3 、Jonathan Gear 4 、Pinar Ozgen Kiratli 5 、Jens Kurth 6 、Ana M Denis-Bacelar 7 、Roland Hustinx 8 、Marianne Patt 9 、Richard L. Wahl 10 、Diana Paez 11 、Francesco Giammarile 11 、Hossein Jadvar 12 、Neeta Pandit-Taskar 13 、Munir Ghesani 14 和 Jolanta Kunikowska 15 1 杜伊斯堡-埃森大学核医学系和德国癌症联盟 (DKTK)-埃森大学医院,德国埃森 2 杜伊斯堡-埃森大学影像研究所核医学和分子成像诊所瑞士南部,Ente Ospedaliero Cantonale,贝林佐纳(瑞士) 3 葡萄牙里斯本 Cuf Descobertas 医院核医学系 4 英国萨顿皇家马斯登 NHS 基金会联合物理学系 5 土耳其安卡拉哈塞特佩大学核医学系 6 德国罗斯托克罗斯托克大学医学中心核医学系 7 英国泰丁顿国家物理实验室 8 比利时列日大学医院核医学和肿瘤成像部及比利时列日大学 GIGA-CRC 体内成像部 9 德国莱比锡莱比锡大学医院核医学系 10 美国密苏里州圣路易斯华盛顿大学医学院放射学系 11 奥地利维也纳国际原子能机构核科学与应用部人体健康部核医学和诊断成像科美国加利福尼亚州洛杉矶 13 美国纽约州纽约市纪念斯隆凯特琳癌症中心放射科 14 美国纽约州西奈山伊坎医学院诊断、分子与介入放射科 15 波兰华沙医科大学核医学系 关键词:治疗诊断学 – 放射性核素 治疗诊断学 – 核医学 – PSMA - PRRT
背景和目标:纳米医学和药物输送系统是一个相对较新但发展迅速的科学分支,它研究纳米和微米级材料作为诊断工具或载体,以可控的方式将治疗剂输送到体内的特定目标。由于全身给药面临着一系列无法通过传统方法解决的问题,开发新的治疗方案变得极为重要。结果:在本文中,我们提供了从我们的角度看最有趣和最有前途的策略的信息,这些策略使用不同性质和设计的各种纳米和微载体组合物、特殊的物理化学放大器、各种设备和方法来优化药物输送过程。本综述简要介绍了纳米医学和药物输送系统领域的最新进展,这些进展是由纳米材料、不同组成的药物载体、特定的物理化学放大器、各种设备和方法领域的最新成果推动的。体内给药的几种基本途径包括注射、植入和透皮给药,为改善局部治疗开辟了新途径,本综述对这几种途径进行了探讨和比较。所有这些途径都具有药物吸收、靶向、延长、时空准确性、减少剂量等诸多方面的优势,必须考虑到这些优势才能为特定疾病的治疗提供正确的方法。结论:本文综述了药物输送载体和装置的侵入性和非侵入性植入,以及透皮途径,这些途径可有效吸收药物,副作用最小。本文讨论的创新药物输送方法为有效治疗各种疾病开辟了道路,尤其是传统方法无法战胜的慢性疾病。尽管透皮给药是一种有前途的非侵入性治疗多种疾病的方法,但通过植入具有双向连接的药物输送装置可以更有效地治疗慢性疾病,这在未来可以大大改善生活质量。微电子、传感器和生物材料等新兴技术的多样性导致医疗行业发生巨大变化,出现了以治疗诊断学方式提供医疗的新系统。关键词:纳米医学、药物输送、治疗诊断学、植入、透皮系统。
引言生物治疗和诊断 (治疗诊断学) 是医药市场上增长迅速的产品。它们包括各种单克隆抗体 (mAb)、疫苗、激素和其他蛋白质,所有这些产品都有广泛的应用。自 2002 年以来,FDA (美国食品药品管理局) 已批准了 300 多个生物制药项目,而且随着生物制剂 (蛋白质、核酸、糖及其复合物) 越来越多地进入诊断和治疗领域,这个数字还在增长 [ 1 ]。满足对这些产品日益增长的需求仍然是一个挑战,并推动着制造工艺的不断创新。策略旨在优化蛋白质表达,以实现更高的体积生产率、稳定的产品质量和更低的制造成本,同时缩短时间。很大一部分可用的生物制剂是重组蛋白,其中大多数是在哺乳动物表达平台上生产的。在这篇综述中,我们重点关注这种表达系统,尽管也有其他系统可用于生产活性重组蛋白,并且正在评估其在制药行业中的潜在用途。哺乳动物
摘要 希腊医生普拉克萨戈拉斯活跃于公元前 300 年左右。他代表了医学从希波克拉底时期到希腊化时期的过渡。普拉克萨戈拉斯是几位活跃于公元前 3 世纪的著名医生的老师。尽管他写了很多书,但他的作品没有一件留存至今。要了解他的教义,我们必须依靠公元一世纪的残篇和证词。保存下来的文本的缺乏也许解释了为什么现代文献中关于普拉克萨戈拉斯的出版物如此之少。只有两本包含希腊文本、翻译和评论的综合书籍出版(Steckerl 1958 和 Lewis 2017)。目的是试图了解为什么普拉克萨戈拉斯在四个明确界定的领域对古代产生了如此大的影响:体液在健康和疾病中的作用、血管的解剖学、脉搏和气(πνεῦμα)的作用。为了更好地理解他是如何提出这些思想的,有必要研究一下前苏格拉底哲学家、希波克拉底和亚里士多德在他之前提出了哪些思想。我在 Thesaurus Linguae Graecae 数据库中搜索了希腊文献,查找提到普拉克萨戈拉的文本。总共有 197 次提到他。普拉克萨戈拉非常强调体液在健康和疾病中的作用。当身体处于平衡状态时,血液会从食物中产生,人是健康的。当身体处于不平衡状态时,体液,尤其是冰冷的玻璃状痰,会产生对健康有害的体液。普拉克萨戈拉可能是第一个从形态和生理上明确区分动脉和静脉的人。他认为动脉的作用是将气,即温暖潮湿的空气,从心脏分配到身体周围。这种分配是通过动脉中的内在活动来实现的,这种活动会导致动脉搏动。普拉克萨戈拉在他的诊断学中使用了脉搏。他认为动脉中的痰液阻碍了气的输送,从而导致疾病。普拉克萨戈拉的主要遗产在于他对动脉和静脉的区分以及在诊断学中使用脉搏。
将等离子体纳米结构与治疗药物以可控的方式结合到可生物降解的聚合物纳米粒子 (NPs) 中,对于纳米医学的不同应用很有意义。通过结合等离子体钯纳米片 (NSs) 的原位形成和封装药物的适当离子性质,可以设计出先进的混合纳米材料。这项研究提出了一种通过 Pickering 双乳液合成混合纳米结构的新方法。当 Pd 前体通过气相程序原位还原时,具有独特近红外 (NIR) 光学特性的各向异性钯 (Pd) NSs 可以组装在 < 200 nm NPs 的聚乳酸-共-乙醇酸基质内。混合纳米材料对外部 NIR 光刺激作出反应。当与疏水性药物结合封装时,在单一阶段中以前所未有的精度组装具有总负载选择性的等离子体纳米结构,为新型治疗诊断学提供了新的机遇,特别是在需要触发药物输送和光热疗法时。
1. 进化及其机制 2. 生物分子的结构和功能、原核和真核细胞结构、细胞周期、细胞信号传导和信号转导 3. 生化原理:pH、缓冲液、生物能学、糖酵解、氧化磷酸化、偶联反应、基团转移、生物能量转换器、酶学、碳水化合物、脂质、氨基酸核苷酸和维生素的代谢。 4. 孟德尔遗传、核酸的结构和功能、原核生物和真核生物的复制、转录、翻译及其调控机制 5. 免疫学:先天、体液和细胞介导免疫;抗原;抗体的结构和功能、免疫学原理的应用、疫苗、诊断学。 6. 应用生物学:重组 DNA 技术:限制和修饰酶;载体;质粒、cDNA和基因组DNA文库、聚合酶链反应、转基因动物和植物、分子诊断和菌株鉴定方法7.生态学及其原理:环境、生态系统生态学保护生物学、污染8.基本技术的原理和应用:显微镜、离心、电泳、色谱法
1 麻醉学 02 围手术期护理、重症监护、人工智能、重症监护和围手术期医学中的机器学习和深度学习、生物技术 2 解剖学 01 解剖学 3 生物化学 04 诊断学、生物标志物、遗传学、癌症代谢组学、癌症基因组学、非编码 RNA、代谢紊乱、临床生物化学、生物物理学、结构生物学、计算生物学 4 微生物学 01 微生物学 5 骨科 01 基础骨科、创伤、冷骨科(感染、代谢疾病、肿瘤)、康复、人体成形术(膝关节和髋关节) 6 儿科 01 7 药理学 02 药理学、植物药理学、临床药理学、药物基因组学 8 精神病学 02 神经科学、精神病学、跨学科(心理学/精神病社会工作/精神科护理/神经科学) 9 放射诊断 01 - 注意:1)候选人只能向一个部门提交申请。 2)招聘广告考虑到拟议研究的广泛主题领域和申请人的一般资格。有关部门可能对候选人的资格有具体要求,并将采用这些要求来筛选申请。
铽具有四种临床上可用于核医学的放射性核素:铽-149、铽-152、铽-155 和铽-161。它们相同的化学性质使得合成具有相同药代动力学特征的放射性药物成为可能,而它们独特的衰变特性使它们在成像和治疗应用中都很有价值。特别是,铽-152 和铽-155 分别是正电子发射断层扫描 (PET) 和单光子发射计算机断层扫描 (SPECT) 成像的有用候选物;而铽-149 和铽-161 分别用于 α - 和 β - -/俄歇电子疗法。这种独特的特性使铽族成为治疗诊断学“配对”原理的理想选择。本综述讨论了铽基放射性药物的优势和挑战,涵盖了从放射性核素生产到床边给药的整个过程。文中详细阐述了铽的基本特性、四种有趣的放射性核素的生产路线,并概述了可用的双功能螯合剂。最后,我们讨论了临床前和临床研究以及核医学领域这一有希望的发展前景。
1. 沙特阿拉伯费萨尔国王大学理学院生物科学系,Al-Ahsa,31982。2. 印度泰米尔纳德邦钦奈,萨维塔大学萨维塔医学与技术科学研究所,萨维塔牙科学院与医院,分子医学与诊断学中心 (COMManD),生物化学系。3. 印度钦奈,Maduravoyal,Alapakkam Main Road,MAHER,Meenakshi Ammal 牙科学院与医院,口腔病理学与口腔微生物学系。4. 印度钦奈,Maduravoyal,Alapakkam Main Road,MAHER,Meenakshi Ammal 牙科学院与医院,口腔颌面外科系。5. 埃及开罗大学理学院植物学与微生物学系,开罗,12613。 6. 埃及艾斯乌特大学理学院动物学系,艾斯乌特 71515。7. 埃及艾斯乌特大学理学院植物学与微生物学系,艾斯乌特 71516。
摘要:随着对各种疾病相关非编码RNA的了解不断加深,ncRNA正成为新的药物和药物靶点。基于不同类型的非编码RNA的核酸药物已被设计和测试。化学修饰已被应用于非编码RNA,如siRNA或miRNA,以增加其对降解的抵抗力,同时尽量减少对其生物功能的影响。化学生物学方法也已被开发来调节各种疾病发生中相关的非编码RNA。设计核糖核酸酶靶向嵌合体以降解内源性非编码RNA等新策略正在成为调节基因表达的有前途的方法,可作为下一代药物。本综述总结了基于非编码RNA的治疗诊断学的现状、开发核酸药物的非编码RNA的主要化学修饰、RNA与不同功能生物分子的结合以及设计和筛选用于调节内源性非编码RNA表达或活性的潜在分子以进行药物开发。最后,讨论了改善非编码RNA传递的策略。