在实验室环境下对 MIDS 战术目标网络技术 (TTNT) 变体进行评估 (OA),该变体旨在集成到 F/A-18E/F 和 EA-18G 中。OA 得出的结论是,三个 MIDS TTNT 终端可以联网并交换 TTNT 消息包,数据包丢失很少。服务测试后分析成功识别并隔离了数据丢失的主要因素之一。DOT&E 认为 MIDS TTNT 终端的可靠性和操作可用性是未来测试和部署的潜在风险,尽管后来通过调整实验室试验台消除了一些故障和操作可用性损失。
2010 年,ASI 搬迁至一个 15,000 平方英尺的设施。新空间包括用于航天器和航空电子设备组装的专用空间。此举还使其更接近 Fal conSAT 小型卫星工程计划,该计划由美国空军学院与 AFRL 合作运营,作为新技术的试验台。另一份 SBIR 合同支持了 ASI 与该学院的合作,FalconSAT-5 于 2010 年底发射,机上搭载了其软件。ASI 软件还为 2018 年底发射的 FalconSAT-6 和计划中的 FalconSAT-8 任务提供支持。
该计划不仅是为了确保米斯郡人民的生活质量更高。我们的重点是采取行动,帮助我们走向更可持续的未来,并为到 2050 年实现全郡净零碳排放铺平道路。我们的九个脱碳区为减少排放提供了公平合理的方法,可作为各种气候行动倡议的试验台。通过分享我们的经验并在全郡范围内应用气候友好型做法,我们可以创建一个更具弹性、生物多样性、环境可持续和气候中性的经济,促进更健康的生活方式和经济发展。
检查、加油、升级、维修或救援卫星,清除轨道碎片,以及建造和维护大型轨道资产和基础设施等要求对于在轨空间基础设施的维护非常重要。到目前为止,所有值得注意的维修任务都是由宇航员舱外活动 (EVA) 在低地球轨道 (LEO) 上执行的。然而,这些操作风险大、成本高、速度慢,有时甚至不可行。EVA 可以被机器人在轨维修 (OOS) 取代,在此期间,任务由空间机械手系统 (SMS) 执行,在文献中也称为追逐者或服务者。它们由一个卫星基座组成,该基座配备一个或多个带有抓钩装置的机器人机械手(臂),并由视觉系统驱动,从而能够捕获目标(客户)卫星。SMS 也可以是安装在空间设施上的大型维修机械手。本研究课题重点关注在轨操纵和捕获,以及与这些活动相关的方面。因此,它包括与刚性和柔性 SMS 的动力学、相关的接触动力学、空间系统的识别方法、监控和控制所需的姿势和状态感测、抓取目标的运动规划方法、运动或交互任务期间的反馈控制方法以及此类系统的地面测试试验台相关的工作。该研究主题包括五篇文章。在《从空气轴承支撑的测试数据估计空间机械手的振动特性》中,李等人从理论和实验上研究了与平面实验测试试验台相关的问题,该试验台使用空气轴承垂直支撑缩放 SMS 并在平面上创建零重力环境。作者指出,空气轴承会影响缩放 SMS 的动力学行为,从而影响其表观关节的刚度和阻尼、固有频率和振动响应。作者提出了一套程序来消除空气轴承的影响,并从电机制动系统的测试数据中识别真实的等效关节刚度和阻尼。识别惯性特性,并使用遗传算法确定等效关节刚度和阻尼。通过消除空气轴承引起的额外惯性,可以估算出机械手的真实振动特性。在《废火箭级在轨机器人抓取:抓取稳定性分析和实验结果》中,Mavrakis 等人研究了废火箭级的抓取,分析了抓取稳定性,并展示了实验结果。提出了一种评估废火箭级机器人抓取稳定性的新方法,该方法基于计算 Apogee Kick Motor 喷嘴的两指抓取的固有刚度矩阵,并将稳定性指标定义为局部接触曲率的函数,材料特性、施加的力和目标质量。稳定性指标是
国家 GNSS 能力中心 • 为履行该机构的法定使命,即定义和控制空间产品和服务的质量参数,ASI 打算配备一个导航能力中心,以便实现特定的试验台,用于认证新的 GNSS 接收器和技术及其诊断。 • 该中心将包含实验室仪器和完整的开发和测试环境(具有建模和仿真能力),以在 HWIL 和 SWIL 模式下测试新的接收器和导航算法,利用 ASI 已经完成的各种开发计划的成果并使用数字孪生环境。 • 该中心还将作为 ASI 导航计划生产的所有产品和设备的存储库,以及处理导航各项任务获取的数据的中心。
datatel 遥测产品是二十五年来持续以用户为导向的开发成果,涵盖广泛的旋转和往复应用,包括航空和工业涡轮机械、航空航天、柴油发动机、汽车、试验台、铁路和工业过程装置。系统已交付,容量从单个通道到单个安装中的数百个通道不等。微型遥测发射器适用于所有标准测量传感器,用于静态和动态应变、扭矩、力、温度、压力、加速度、振动、位移等。但是,datatel 始终准备根据客户要求开发或修改特殊发射器,以及相关的接收器和信号调节。
新闻稿严格禁止发布,直至 2021 年 6 月 16 日上午 10:00 新加坡国立大学和南洋理工大学启动首个热带数据中心试验平台 新的 2300 万新元计划旨在为位于热带地区的数据中心开拓绿色高效的冷却解决方案,使其最佳运行 新加坡,2021 年 6 月 16 日——新加坡国立大学 (NUS) 和新加坡南洋理工大学 (NTU Singapore) 与新加坡数据中心行业的主要利益相关者一起,建立了一项新的 2300 万新元的研究项目,以开发创新和可持续的冷却解决方案,用于位于热带地区的数据中心。新加坡国立大学将建立一个最先进的试验平台设施,以促进此类先进冷却技术的共同创造和展示。新的可持续热带数据中心试验台 (STDCT) 是热带地区首个此类试验台,将成为学术界和业界共同努力确保该地区数据中心行业面向未来的创新中心。该项目由新加坡国立大学主办的新加坡冷却能源科学与技术 (CoolestSG) 联盟策划,研究人员将开发和展示节能冷却技术,以在热带数据中心环境中取得突破。试验台设施预计将于 2021 年 10 月 1 日投入运营。该项目由新加坡国家研究基金会 (NRF) 和主要行业合作伙伴 Facebook 共同资助。该研究由新加坡国立大学和南洋理工大学牵头,并得到信息通信媒体发展局 (IMDA) 的支持。其他五个行业合作伙伴包括 Ascenix Pte Ltd、CoolestDC Pte Ltd、Keppel Data Centres、New Media Express Pte Ltd 和 Red Dot Analytics Pte Ltd。对高效和可持续数据中心的需求不断增长 数字经济的兴起导致对容纳计算和数据存储基础设施的数据中心的需求不断增长。由于计算机服务器产生大量热量,这些数据中心目前按照工业惯例在 23 至 27 摄氏度的温度下进行空气冷却,环境湿度为 50% 至 60%。维持这种受控环境需要高能耗,从而导致高成本和碳排放——尤其是对于新加坡这样的热带国家而言。新加坡为东南亚约 60% 的数据中心提供服务。新加坡的数据中心消耗了该国总能源需求的近 7%,预计到 2030 年这一数字将达到 12%。因此,越来越需要在同一占地面积内整合更多计算能力来降低功耗和碳足迹,同时开发解决方案来满足数据中心的冷却需求。
I 1960 年激光的发明使得使用相干光源作为激光雷达发射器成为可能。相干激光雷达具有许多与更常见的微波雷达相同的基本特征。然而,激光极短的工作波长带来了新的军事应用,特别是在目标识别和导弹制导领域。本文追溯了林肯实验室从 1967 年到 1994 年的激光雷达发展历程。这项发展涉及两种激光雷达系统的构建、测试和演示——高功率、远程 Firepond 激光雷达系统和紧凑型短程红外机载雷达 (IRAR) 系统。Firepond 解决了战略军事应用,例如空间物体监视和弹道导弹防御,而 IRAR 则被用作机载探测和战术目标识别的试验台。吨