摘要 - 地球观察卫星可以在不同的时间,气候条件和平台形式下捕获光学图像,在颜色和亮度上表现出很大的差异,在合成大面积光学卫星图像时会导致视觉体验差。相关的颜色平衡问题引起了研究人员的极大关注,但诸如缺乏研究数据和对模型参数的敏感性之类的挑战持续存在。为了解决这些问题,本文发布了一个公开开放的数据集,并提出了语义细分增强色彩平衡网络(SECBNET)。首先,为了减轻研究数据的稀缺性,我们开发了一个公共可用的遥感图像颜色平衡数据集,Zhu hai色彩平衡图像(ZHCBI),以支持相关的研究活动。第二,为了提高颜色平衡图像和目标图像之间的语义一致性,我们设计了以分割结果为指导的双分支U-NET架构,并提出了一种新颖的分割特征损失函数。最后,为了解决分段处理中块之间的接缝问题和不自然的过渡,我们引入了一个基于加权平均的后处理模块。我们对ZHCBI数据集上的现有主流颜色平衡算法进行了比较实验和分析。结果表明,与其他主流方法相比,我们所提出的方法可实现最先进的颜色平衡质量,并具有显着改善的视觉效果和更高的峰信噪比(PSNR)(23.64 dB)。
摘要 - 平词检测通常依赖于词汇相似性度量,这些度量无法识别语义相似但词汇不同的释义。为了解决这个问题,我们提出了一种混合方法,将词汇指纹(通过滚动哈希和奖励)与来自基于变压器的模型得出的语义嵌入在一起。我们计算词汇和语义相似性得分,然后使用分类模型组合它们。在这项工作中,我们还比较了多个分类算法 - 逻辑回归,随机森林和XGBoost,以选择最终系统的表现最佳分类器。此外,我们分析了每种算法组件的复杂性,包括滚动哈希,奖励和语义嵌入生成。在Quora问题对的子集上进行的实验数据集表明,我们的混合方法超过了单方法基准。交互式的精简应用显示了实时参数调整,并突出了系统的鲁棒性。这项工作说明了将表面水平的词汇模式和深层语义关系团结起来,为窃的检测提供了一种更全面,更可靠的方法。索引术语 - 平式检测,词汇指纹识别,销售嵌入,变压器模型,混合方法,综合性分析。
生成基因组学模型可以设计越来越复杂的生物系统。然而,有效地控制这些模型以生成具有所需功能的新序列仍然是一项重大挑战。在这里,我们展示了 Evo,一个拥有 70 亿个参数的基因组语言模型,可以执行功能引导设计,超越自然序列。通过学习多个基因之间的语义关系,Evo 实现了基因组的“自动完成”,其中编码所需功能的 DNA 提示指示模型生成可挖掘类似功能的新 DNA 序列。我们将此过程称为“语义挖掘”,与传统的基因组挖掘不同,它可以访问不受发现的进化创新约束的序列景观。我们通过实验测试生成的抗 CRISPR 蛋白和毒素-抗毒素系统的活性来验证这种方法,包括与任何天然蛋白质没有显着同源性的从头基因。令人惊讶的是,即使在没有结构假设、已知的进化保守性或特定任务微调的情况下,使用 Evo 进行上下文蛋白质设计也能实现强大的活性和较高的实验成功率。然后,我们使用 Evo 自动完成数百万个提示,以生成 SynGenome,这是一个独一无二的数据库,其中包含超过 1200 亿个 AI 生成的基因组序列碱基对,可实现多种可能功能的语义挖掘。语义挖掘范例可实现超越观察到的进化宇宙的功能探索。
摘要本文概述了我们对准确性轨道和语义表解释(STI)和大语言模型(LLMS)的贡献,该语义网络挑战在表格数据上挑战对知识图匹配(SEMTAB)。我们的方法涉及使用LLM来解决挑战中提出的各种任务。具体来说,我们对大多数任务采用了零射门和少量提示技术,这促进了LLMS以最少的先前培训来解释和注释表格数据的能力。对于列属性注释(CPA)任务,我们通过应用一组预定义的规则来采用不同的方法,该规则是针对每个数据集的结构量身定制的。我们的方法取得了显着的结果,𝑓1 -𝑠𝑐𝑜𝑟𝑒超过0。92,证明了LLM在应对SEMTAB挑战方面的有效性。这些结果表明,LLM具有重要的功能,作为语义表注释和知识图匹配的强大解决方案,突出了它们推进语义Web技术领域的潜力。
对环绕声的语义的空间理解是自动驾驶汽车需要安全驾驶决策所需的关键能力。最近,纯粹基于视觉的解决方案已增强了研究的兴趣。在特定的方法中,从多个摄像机中提取鸟类视图(BEV)的方法表现出了很好的空间理解性能。本文介绍了学习的位置编码的依赖性,以将基于变压器的甲基化的图像和BEV特征映射元素关联。我们提出利用外两极的几何约束,以模拟相机注意场与BEV之间的关系。它们被纳入注意机制中,作为一种新的归因术语,是学习位置编码的替代方案。实验表明,与隐式学习摄像机配置相比,我们的方法的大鹰队以2%MIOU的方式优于2%MIOU的BEV方法,并且具有出色的概括能力。
在最近的研究中,研究人员使用了大型语言模型(LLM)来探索大脑中的语义表示。但是,他们通常分别评估了不同级别的语义内容,例如语音,对象和故事。在这项研究中,我们使用功能磁共振成像(fMRI)记录了大脑活动,而参与者则观看了8.3个小时的戏剧和电影。我们在多个语义级别注释了这些刺激,这使我们能够为此内容提取LLM的潜在表示。我们的发现是LLMS比传统语言模型更准确地预测人脑活动的结果,尤其是对于复杂的背景故事。此外,我们确定了与不同语义表示相关的不同大脑区域,包括多模式视觉 - 语义表示,这突出了同时建模多级和多态语义表示的重要性。我们将使我们的fMRI数据集公开使用,以促进对LLM与人脑功能保持一致的进一步研究。请在https://sites.google上查看我们的网页。com/view/llm and-brain/。
本研究对与感知和想象概念相关的神经信号进行了分析,旨在提高有言语障碍人士的沟通能力。该研究利用通过 124 通道 ANT Neuro eego Mylab EEG 系统(ANT Neuro BV,亨格洛,荷兰)获取的公开可用的脑电图 (EEG) 数据。该数据集包括来自 12 名参与者的 11,554 次试验。所提出的卷积神经网络 (CNN) 模型在将 EEG 数据分类为来自感知或想象的语音任务条件方面优于其他模型,测试准确率达到 77.89%。传统的机器学习模型,包括随机森林 (RF)、支持向量分类器 (SVC) 和 XGBoost,都表现出过度拟合的趋势,导致准确率较低。至于语义解码,不幸的是,不同的模型在机会层面上执行。索引词:语音解码、EEG、BCI、语义解码
人类的视觉系统能够处理连续的视觉信息流,但大脑在连续的视觉处理过程中如何编码和检索近期的视觉记忆仍不清楚。本研究探讨了在连续的视觉刺激下,工作记忆保留过去信息的能力。然后我们提出了一项新任务——记忆解开,旨在从 fMRI 信号中提取和解码过去的信息。为了解决过去记忆信息干扰的问题,我们设计了一种解开的对比学习方法,灵感来自前摄干扰现象。该方法将相邻 fMRI 信号之间的信息分离为当前和过去成分,并将它们解码为图像描述。实验结果表明,该方法有效地解开了 fMRI 信号中的信息。这项研究可以推进脑机接口并缓解 fMRI 中时间分辨率低的问题。1
于2023年12月20日收到; 2024年6月18日修订; 2024年8月20日接受。出版日期2024年8月26日;当前版本的日期2024年11月5日。这项工作得到了中国国家自然科学基金会(NSFC)的一部分,根据赠款62102099和授予U22A2054的赠款,部分由Guangzhou基础研究计划,根据Grant 2023A04J1699的赠款,一部分是由Guangdong Basic和Grant Indied Basic Research Foundation下的Grant 2023A151515151514 01137。这项研究也得到了新加坡国家研究基金会的一部分,部分由InfoComm媒体发展局在其未来的通信研发研究和发展方面的一部分,部分由国防科学组织(DSO)国家实验室根据AI新加坡计划,根据Grant FCP-NTU-RG-2022-010和Grant FCP-ASTRORE的GRANT FCP-ASTRASTAR TAIRISTION,在Grant FCP-NTU-RG-2022-010和下第1层在赠款RG87/22下,部分由NTU金融计算技术中心(NTU-CCTF)。这项研究也部分得到了Sutd SRG-ISTD-2021-165的支持,部分由Sutd-Zju的想法在Grant Sutd-Zju(VP)202102下的一部分,部分由新加坡教育部,新加坡教育部在SMU-SUTD下的22-SISSIS-SIS-SIS-SIS-SMU-048和STAIRITY pactiatiatiatiatiatiatiatiation in. Smu-sutd pransiatiatiatiatiatiations praintiatiatiatiatiatiations pransiatiatiatiatiationnif。NSF在Grant CNS-2148382下部分支持Shiwen Mao的工作。建议接受J. Ren。(通讯作者:Jiawen Kang。)
地址:巴基斯坦木尔坦电子邮件:imrankhurshid25@gmail.com摘要自动驾驶引起了人们的重大关注,因为它可以实时消除严重的驾驶风险。虽然自动驾驶汽车在很大程度上依赖传感器来进行车道检测,障碍物识别和环境意识,但由于诸如阴影,不良的车道标记和障碍物视图之类的因素,准确的车道识别仍然是持续的挑战。尽管计算机视觉的进展,但这个问题尚未完全解决,这在当前文献中存在差距。这项研究的主要目的是通过开发增强的车道检测系统来应对这些挑战。为了实现这一目标,该研究集成了先进的技术,包括语义分割,边缘检测和深度学习,再加上来自相机,激光雷达和雷达的多传感器数据融合。通过采用这种方法,该研究研究了各种泳道检测方法,并根据准确性,特异性和处理速度对现有系统的拟议模型进行了基准测试。初始发现表明,语义分割和多传感器融合的组合可改善实时场景中的车道检测。所提出的模型达到了97.8%的车道检测准确性,特异性为99.28%,平均处理时间为0.0047秒。本研究不仅解决了现有车道检测系统的局限性,而且还提供了改善自动驾驶汽车道路安全性的见解。关键字:车道检测,语义细分,边缘检测,自动驾驶汽车。