通常,计算问题会变得越来越复杂,这要么是由于所需的计算级别、处理类型,要么是因为处理难以处理的多维数据。在过去的十年中,自从 GPU 向普通用户推出以来,许多这些问题已经变得容易解决。特别是近年来,随着机器学习方法的增强。通常,问题的复杂性是 NP-Hard。这种类型的问题可以在复杂的优化系统中发现,例如金融、物流或运输。通常,人们认为量子计算机介于所谓的 P 问题和 PSPACE 之间。具体来说,就是 BQP 型问题;然而,现实情况是,量子计算的真正极限仍然未知,而且无论如何,传统计算机继续表现出卓越的性能。
本次演讲的目的是在黑洞蒸发的玩具模型中解释引力如何解决这个问题,并设法将半经典状态(来自较大的空间)编码到较小的微观空间中。半经典状态是内部的有效场论激发,而微观状态是黑洞微观状态。
对粒子进行离散时间量子游动演化时,由于系统噪声的影响,游动态容易出现误差。该研究提出了一种基于双格子Bose-Hubbard模型的多粒子量子游动误差修正算法。首先,根据局域欧氏生成元构造两点Bose-Hubbard模型,并证明模型中的两元素可以任意替换。其次,利用Bethe假设方法得到了模型中粒子的跃迁强度与纠缠度的关系。第三,对量子格子的位置进行编码,构造量子态交换门。最后,通过将游动器切换到量子纠缠码的格点上,进行格点上的量子游动状态替换,再次进行替换。对双格子Bose-Hubbard模型中的量子粒子的纠缠进行了数值模拟。当粒子间相互作用与粒子跃迁强度的比值接近于0时,利用该算法可以实现模型中量子粒子的纠缠操作。根据Bose-Hubbard模型的性质,粒子纠缠后可以实现量子行走纠错。本研究引入流行的restnet网络作为训练模型,使纠错电路的解码速度提升约33%。更重要的是,卷积神经网络(CNN)解码器的下限阈值由传统最小权重完美匹配(MWPM)下的0.0058提升到0.0085,实现了高容错率的量子行走稳定行进。
本文研究了在连续变量量子计算过程中获得的通用高斯变换的误差校正。我们试图使我们的理论研究更接近实验中的实际情况。在研究误差校正过程时,我们考虑到资源 GKP 状态本身和纠缠变换都是不完美的。实际上,GKP 状态具有与有限压缩程度相关的有限宽度,并且纠缠变换是有误差的。我们考虑了一种混合方案来实现通用高斯变换。在该方案中,变换是通过对簇状态的计算来实现的,并辅以线性光学操作。该方案在通用高斯变换的实现中给出了最小的误差。使用这种方案可以将实现接近现实的容错量子计算方案所需的振荡器压缩阈值降低到 -19.25 dB。