量子纠错 [1–4] 通过将多个物理量子位组合成一个逻辑量子位,为实现实用量子计算提供了一条途径,随着更多量子位的添加,逻辑错误率会呈指数级抑制。然而,只有当物理错误率低于临界阈值时,这种指数级抑制才会发生。在这里,我们在最新一代超导处理器 Willow 上展示了两个低于阈值的表面代码存储器:距离为 7 的代码和集成了实时解码器的距离为 5 的代码。当代码距离增加两倍时,我们更大的量子存储器的逻辑错误率被抑制了 Λ = 2.14 ± 0.02 倍,最终得到一个 101 量子位距离为 7 的代码,每个纠错周期的错误率为 0.143% ± 0.003%。这种逻辑存储器也超出了盈亏平衡点,是其最佳物理量子位的寿命的 2 倍。 4 ± 0 . 3. 我们的系统在实时解码时保持低于阈值的性能,在距离为 5 时实现平均 63 µ s 的解码器延迟,最多可进行一百万次循环,循环时间为 1.1 µ s。我们还运行距离为 29 的重复代码,发现逻辑性能受到每小时约一次或 3 × 10 9 次循环发生的罕见相关错误事件的限制。我们的结果表明,如果扩展,设备性能可以实现大规模容错量子算法的操作要求。
我们的研究调查了牛津纳米孔技术的有效性,通过重新陈述33个长达3年的克雷伯氏菌肺炎爆发的33个分离株,并以Illumina的短阅读测序数据作为参考点。我们通过对牛津纳米孔技术测序的基因组进行CGMLST和系统发育分析检测到相当大的基本误差,从而导致从暴发群集中错误排除某些与暴发有关的菌株。附近的甲基化位点会导致这些误差,也可以在肺炎K. k. tneumoniae以外的其他物种中找到。基于这些数据,我们探讨了基于PCR的测序和掩盖策略,这些策略既成功解决这些不准确性,又可以确保准确的爆发追踪。我们将掩盖策略作为生物信息学工作流(MPOA),以无参考的方式识别和掩盖有问题的基因组位置。我们的研究强调了使用牛津纳米孔技术对原核生物进行测序的局限性,尤其是用于研究暴发。对于牛津纳米孔技术无法等待进一步的技术发展的时间关键项目,我们的研究建议我们基于PCR的测序或使用我们提供的生物信息学工作流。我们建议在发布结果时应提供基于质量的基因组质量基因组。
摘要 — 最近的实验证明了在 DNA 和蛋白质等大分子中存储数字信息的可行性。然而,DNA 存储通道容易出现删除、插入和替换等错误。在 DNA 字符串的合成和读取阶段,会生成许多原始字符串的噪声副本。从这些噪声副本中恢复原始字符串的问题称为序列重建。该问题中的一个关键概念是错误球,它是所有可能序列的集合,这些序列可能由对原始序列应用有限数量的错误而产生。Levenshtein 表明,给定通道恢复原始序列所需的最小噪声副本数等于两个错误球交集的最大大小加一。因此,推导任何通道和任何序列的错误球大小对于解决序列重建问题至关重要。在 DNA 存储系统中,字符串中的多种错误(例如删除、插入和替换)可能同时发生。在这项工作中,我们旨在推导具有多种错误类型和最多三次编辑的通道的错误球大小。具体来说,我们考虑具有单删除双替换、单删除双插入和单插入单替换错误的通道。
摘要 —随着 CMOS 技术的不断扩展,微电子电路越来越容易受到微电子变化的影响,例如工作条件的变化。这种变化会导致微电子电路的延迟不确定性,从而导致时序误差。电路设计人员通常在电路和架构设计中使用保守的保护带来解决这些错误,但这可能会导致操作效率的显著损失。在本文中,我们提出了 TEVoT,这是一种监督学习模型,可以预测不同工作条件、时钟速度和输入工作负载下功能单元 (FU) 的时序误差。我们执行动态时序分析来表征不同条件下 FU 的延迟变化,并在此基础上收集训练数据。然后,我们从训练数据中提取有用的特征并应用监督学习方法建立 TEVoT。在 100 种不同的工作条件、4 种广泛使用的 FU、3 种时钟速度和 3 个数据集中,TEVoT 的平均预测准确率为 98.25%,比门级仿真快 100 倍。我们进一步使用 TEVoT 通过将电路级时序误差暴露到应用程序级来估计不同操作条件下的应用程序输出质量。在 100 种操作条件下,TEVoT 对两个图像处理应用程序的平均估计准确率达到 97%。
人类适应行为的综合解释越来越多地将预测作为解释个人目标(通过预测编码)和学习(通过预测误差)的核心组成部分。这些解释认为,人类大脑通过不断更新和整合来自外部和内部环境的自下而上的信息以及由个人目标决定或由先前经验塑造的自上而下的期望来对未来事件进行预测(Clark,2013)。在神经认知学习理论中,预测编码或预测误差被定义为一种基本机制,它将目标的内部表征与感知事件相一致,以指导感知和行动(Friston,2010)。预测的概念也影响了人类语言理解的理论模型,这些模型假设个体在语义、形态句法、词汇和话语层面不断形成对即将到来的语言内容的期望。因此,预测促进语言理解,
如何解释感官信息取决于环境。然而,环境如何影响大脑中的感觉处理仍然难以捉摸。为了研究这个问题,我们结合了计算建模和小鼠皮质神经元的体内功能成像,这些神经元在触觉感官辨别任务的逆转学习过程中发挥作用。在学习过程中,第 2/3 层体感神经元增强了对奖励预测刺激的反应,这可以解释为顶端树突的增益放大。奖励预测误差减少,对结果预测的信心增加。在规则逆转后,外侧眶额皮质通过去抑制 VIP 中间神经元编码了一个表示信心丧失的环境预测误差。皮质区域中预测误差的层次结构反映在自上而下的信号中,这些信号调节初级感觉皮质中的顶端活动。我们的模型解释了大脑中如何检测到环境变化,以及不同皮质区域中的错误如何相互作用以重塑和更新感官表征。
量子场论中的规范对称性产生了极其丰富的现象。最突出的是,SU(3Þ×SU(2Þ×U(1Þ)规范对称性描述了标准模型的相互作用。进行从头算预测以与实验进行比较需要大量的计算资源。特别是,由于超级计算机和算法的进步,格点规范理论(LGT)中的蒙特卡罗方法在过去的几十年里取得了丰硕成果。然而,由于玻尔兹曼权重变为复值,涉及早期宇宙非平衡演化[1-4]、夸克胶子等离子体的传输系数[5]和强子碰撞中的部分子物理[6-11]等动力学问题出现了符号问题。未来,大规模量子计算机可以通过在哈密顿形式中进行实时模拟来避免这一障碍[12-16]。
b'b't量子Zeno效应以最简单的形式描述了量子系统的频率测量可以减慢其时间演变的现象,最终导致其停止完全改变。已广泛研究了封闭的量子系统[BN67,MS77,CHE72,FRI76,FP08,EI05,EI21]和开放量子系统[MS03,BZ18,BFN + 20,MW19,MW19,MW19,MAT04,GL \ XC2 \ XC2 \ XC2 \ XA8U16,BDS21,MRM MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR M \ XC2 \ XA8O24]和现象的实验验证是在[IHBW90,FGMR01,SMB + 06,SHC + 14]中实现的。量子ZENO效应具有各种应用,例如在控制反应[FJP04,HRB + 06],量子误差校正[EARV04,PSRDL12]和状态准备[NTY03,NUY04,WYN08]中。在这里,我们考虑以下在量子动力学半群下进化的无限二维开放量子系统中的量子zeno效应的一般设置,该系统由e t l'
通常,计算问题会变得越来越复杂,这要么是由于所需的计算级别、处理类型,要么是因为处理难以处理的多维数据。在过去的十年中,自从 GPU 向普通用户推出以来,许多这些问题已经变得容易解决。特别是近年来,随着机器学习方法的增强。通常,问题的复杂性是 NP-Hard。这种类型的问题可以在复杂的优化系统中发现,例如金融、物流或运输。通常,人们认为量子计算机介于所谓的 P 问题和 PSPACE 之间。具体来说,就是 BQP 型问题;然而,现实情况是,量子计算的真正极限仍然未知,而且无论如何,传统计算机继续表现出卓越的性能。
随着量子计算技术的进步,量子通信有望在通信领域发挥重要作用。量子对象的固有属性(例如叠加和纠缠)有可能提供新颖的解决方案,以克服传统通信系统在媒体传输等带宽密集型应用中所遇到的挑战。本研究探索了量子通信系统在使用量子叠加进行图像传输中的性能,并使用简单的量子信道模型研究了其性能。随着信道噪声的增加,与理想的传统信道相比,通过量子信道传输图像的率失真性能有显著的提高。这种构建基于量子通信的图像传输系统的新尝试表明,该方法有潜力满足日益增长的高质量媒体传输应用需求。