[1]自2002年以来,使用宽带发射辐射仪(SABER)仪器来通过大气来进行大气的近乎全球和连续的大气测量值,包括白天和夜间动力学温度(T K)从20到105 km,可供科学社区使用。从大气的15 m m co 2肢体发射的SABER测量中检索温度。这种发射与稀有的中层和热层中局部热力学平衡(LTE)条件分离,因此有必要考虑在70公里以上的检索算法中CO 2振动状态非LTE种群。这些人群取决于动力学参数,描述了发生大气分子之间的能量交换的速率,但其中一些碰撞速率尚不清楚。我们考虑了当前的不确定性在n 2,o 2和o的Co 2(U 2)的速率中,以及CO 2(u 2)振动振动 - 振动 - 振动交换,以估计其对不同大气条件的Saber T K的影响。t k对后两者的不确定性更敏感,它们的影响取决于高度。由于非LTE动力学参数引起的T K组合系统误差在大多数纬度和季节(极性夏季除外)在100 km处的95 km低于95 km的±1.5 k,如果T k轮廓没有明显的垂直结构。在较不利的极性夏季条件下,误差为80 km,84 km时为84 km,在100 km时为±6 k。对于较强的温度反转层,误差在82 km时达到±3 k,在90 km时达到±8 k。这特别影响潮汐幅度估计值,错误的误差高达±3 k。
I. 引言 容错量子纠错码 (QECC) 按照定义能够避免错误传播。更明确地,[ n, k, d ] 最大-最小距离 QECC 将 k 个逻辑量子比特编码为 n 个物理量子比特,最小距离为 d,因此它能够纠正 t = [ d − 1 / 2] 个单独的物理量子比特错误。我们的设计目标是确保尽管使用了现实的不完美量子门,错误的扩散不会导致超出容错 QECC 的纠错能力。更正式地讲,如果单个组件以概率 p 发生故障,导致电路块输出端出现少于 t = ( d − 1) / 2 个单独的量子比特错误,则受 [ n, k, d ] QECC 保护的量子电路具有容错能力 [1]。在这个理想假设下,单个门引入的物理量子比特错误不会升级为无法纠正的错误数量,前提是考虑 [ n, k, d ] QECC。但是,如果单个门错误耗尽了 [ n, k, d ] 代码的纠错能力,遇到第二个门错误将导致错误扩散。我们假设单个门错误的概率为 p 。因此,两个同时发生的门错误的概率为 O ( p 2 ) ,前提是错误事件彼此独立,而 p ≪ 1 和 p 2 < p 。不幸的是,受控非 (CNOT) 门中控制量子比特的位翻转错误将导致有害的
I. 引言 容错量子纠错码 (QECC) 按照定义能够避免错误传播。更明确地,[ n, k, d ] 最大-最小距离 QECC 将 k 个逻辑量子比特编码为 n 个物理量子比特,最小距离为 d,因此它能够纠正 t = [ d − 1 / 2] 个单独的物理量子比特错误。我们的设计目标是确保尽管使用了现实的不完美量子门,错误的扩散不会导致超出容错 QECC 的纠错能力。更正式地讲,如果单个组件以概率 p 发生故障,导致电路块输出端出现少于 t = ( d − 1) / 2 个单独的量子比特错误,则受 [ n, k, d ] QECC 保护的量子电路具有容错能力 [1]。在这个理想假设下,单个门引入的物理量子比特错误不会升级为无法纠正的错误数量,前提是考虑 [ n, k, d ] QECC。但是,如果单个门错误耗尽了 [ n, k, d ] 代码的纠错能力,遇到第二个门错误将导致错误扩散。我们假设单个门错误的概率为 p 。因此,两个同时发生的门错误的概率为 O ( p 2 ) ,前提是错误事件彼此独立,而 p ≪ 1 和 p 2 < p 。不幸的是,受控非 (CNOT) 门中控制量子比特上的位翻转错误将导致对目标量子比特施加有害的非操作,从而导致两个错误的量子比特,而不是一个。因此
随着量子计算技术的进步,量子通信有望在通信领域发挥重要作用。量子对象的固有属性(例如叠加和纠缠)有可能提供新颖的解决方案,以克服传统通信系统在媒体传输等带宽密集型应用中所遇到的挑战。本研究探索了量子通信系统在使用量子叠加进行图像传输中的性能,并使用简单的量子信道模型研究了其性能。随着信道噪声的增加,与理想的传统信道相比,通过量子信道传输图像的率失真性能有显著的提高。这种构建基于量子通信的图像传输系统的新尝试表明,该方法有潜力满足日益增长的高质量媒体传输应用需求。
我们考虑了读出误差和相干误差(即确定性相位旋转)对表面代码的综合影响。我们使用一种最近开发的数值方法,通过将物理量子位映射到马约拉纳费米子。我们展示了如何在存在读出误差的情况下使用这种方法,在现象学层面上进行处理:完美的投影测量,可能记录错误的结果,以及多次重复的测量。我们发现这种错误组合的阈值,其错误率接近相应非相干错误通道(随机 Pauli-Z 和读出误差)的阈值。使用最坏情况保真度作为逻辑错误的度量,阈值错误率的值为 2.6%。低于阈值,扩大代码会导致逻辑级错误的相干性迅速丧失,但错误率高于相应非相干错误通道的错误率。我们还分别改变了相干和读出误差率,发现表面代码对相干误差比对读出误差更敏感。我们的工作将最近关于完美读出的相干误差的结果扩展到实验上更现实的情况,即读出误差也会发生的情况。
尽管[插入强迫]对[插入偏置过程]的影响的扩增将发生在数十年的时间尺度上,但与[插入有偏见的过程]本身相关的固有时间尺度通常是在小时的顺序上。因此,原则上应该可以通过在短期天气预测模式下研究此类模型的性能来评估[插入过程]的异常值是否现实。
对于 NISQ 设备的应用而言,在不进行完全纠错的情况下有效抑制错误至关重要。错误缓解使我们能够在提取期望值时抑制错误,而无需任何纠错码,但其应用仅限于估计期望值,无法为我们提供作用于任意量子态的高保真量子操作。为了应对这一挑战,我们建议将错误过滤 (EF) 用于基于门的量子计算,作为一种实用的错误抑制方案,而无需诉诸完全量子纠错。结果是一个通用的错误抑制协议,其中抑制错误所需的资源与量子操作的大小无关,并且不需要对操作进行任何逻辑编码。只要遵守错误层次结构,即当辅助 cSWAP 操作的噪声小于要纠正的操作时,该协议就会提供错误抑制。我们进一步分析了 EF 在量子随机存取存储器中的应用,其中 EF 提供了硬件高效的错误抑制。
摘要:最坏的数据生成(WCDG)概率度量是作为表征机器学习算法的概括功能的工具。这样的WCDG概率度量被证明是两个不同优化问题的独特解决方案:(a)在数据集中,预期损失的最大化是在数据集中的相对熵相对于参考度量的一组概率测量值的最大化; (b)相对于参考度量,通过相对熵的正则化对预期损失的最大化。这样的参考度量可以解释为数据集中的先验。WCDG累积物是有限的,并根据参考度量的累积量进行了界定。分析WCDG概率度量引起的预期经验风险的浓度,引入了模型的(ϵ,δ) - 固定性的概念。闭合形式表达式显示了固定模型的预期损失的灵敏度。这些结果导致了新的表达式,用于任意机器学习算法的概括误差。这些表达式可以大致分为两个类。第一个涉及WCDG概率度量,而第二个涉及Gibbs算法。此发现表明,对Gibbs算法的概括误差的探索促进了适用于任何机器学习算法的总体见解的推导。
出于抑制噪声对中型量子设备影响的迫切需求,已经提出了许多量子误差缓解协议。然而,它们的普遍潜力和局限性仍然难以捉摸。特别是,要了解量子误差缓解的最终可行性,必须表征基本采样成本——任意缓解协议必须运行多少次有噪声的量子设备。在这里,我们建立了量子误差缓解采样成本的通用下限,以高概率实现所需的精度。我们的界限适用于一般的缓解协议,包括涉及非线性后处理的协议和尚未发现的协议。结果表明,对于各种噪声模型,缓解误差的广泛协议所需的采样成本必须随着电路深度呈指数增长,揭示了有用的有噪声的近期量子设备可扩展性的基本障碍。
摘要 - Quantum链接本质上是嘈杂的,量子信息位(Qubits)在0.5毫秒内的纠缠状态中遭受了13%的降解。因此,缓解错误对于多跳量子网络中可靠的端到端数据通信至关重要。与在单个量子计算机的包含环境中执行的典型操作相比,由于每个中间链路上噪声的随机变化,因此在此类计算机的分布式网络中删除了比特和相位流误差。本文介绍了一种确定比特和相纹误差(缩写为“ BIP”)的方案,并减轻它们以进行分布式和网络的量子系统。为了实现这一目标,我们使用一般误差模型对环境噪声进行建模,并在不同的计算库中获取误差校准矩阵,以实现比特相折叠误差。的结果表明,通过纠正BLOCH球体表示中的高程θ和方位角φ,BIP与已接收量的误差缓解方法相比,接收到的Qubits的忠诚度超过了95%。索引术语 - Quantum通信网络,减轻量子错误,量子计算