努力促进公平、问责和透明被认为对于培养人工智能信任 (TAI) 至关重要,但现有文献对这种“信任”的阐述令人沮丧。缺乏对信任本身的阐述表明信任是普遍理解的、不复杂的,甚至无趣的。但真的是这样吗?我们对 TAI 出版物的分析揭示了许多不同的倾向,这些倾向在谁在信任(代理人)、信任什么(对象)、基于什么(基础)、为了什么(目标)和为什么(影响)方面有所不同。我们开发了一个本体来封装这些关键差异轴,以 a) 阐明文献中看似不一致的地方,b) 更有效地管理令人眼花缭乱的 TAI 考虑因素。然后,我们通过探索公平、问责和透明度的出版物语料库来反映这个本体,以研究在这些促进信任的方法中和之间考虑 TAI 的各种方式。