。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
基因调控是多细胞生物的重要过程,但识别功能性调控序列和机制可能具有挑战性。在秀丽隐杆线虫中,正向遗传学可以识别破坏生理过程的内源性突变(“等位基因”),从而以无偏见的方式定义功能序列(Brenner 1974;Trent、Wood 和 Horvitz 1988;Desai 等人 1988;Barton、Schedl 和 Kimble 1987)。基于 CRISPR 的基因组编辑可用于测试内源序列的功能和生理作用(Dickinson 和 Goldstein 2016;Vicencio 和 Cerón 2021)。报告基因检测中对非编码 DNA 进行系统性测试(例如“报告基因抨击”)可以识别功能序列,但不能直接检查生理功能(Aamodt、Chung 和 McGhee 1991;Didiano 和 Hobert 2006;Boulin、Etchberger 和 Hobert 2006;Nance 和 Frøkjær-Jensen 2019)。
摘要 顺式调控序列的进化取决于它们如何影响基因表达,并促使人们识别和预测导致物种内和物种间表达差异的顺式调控变体。虽然在将顺式调控变体与表达水平联系起来方面取得了很大进展,但基因激活和抑制的时间对顺式调控序列的进化也可能很重要。我们研究了双生期转变期间酵母菌物种内和物种间的等位基因特异性表达 (ASE) 动态,发现基因表达动态中存在明显的顺式作用变化。物种内 ASE 与基因间变体相关,ASE 动态与插入和缺失的关联性比与 ASE 水平的关联性更强。为了完善这些关联,我们使用高通量报告基因检测来测试启动子区域和单个变体。在重现内源表达的区域子集中,我们识别并表征了影响表达动态的顺式调控变体。在不同物种之间,嵌合启动子区会产生新的模式,并表明基因表达动力学的进化受到限制。我们得出结论,顺式调控序列的变化可以调节基因表达动力学,而表达动力学与表达其他方面之间的相互作用与顺式调控序列的进化有关。
Ivan E. Ivanov 1,2,†、Addison V. Wright 3, ‡、Joshua C. Cofsky 3、Kevin D. Palacio Aris 4、Jennifer A. Doudna 3,5、Zev Bryant 2,6
摘要:药物药代动力学和药效学管理是个性化药物治疗的一种方法。这可以通过控制外来化合物代谢来实现。本研究旨在研究通过靶向调节细胞内信号转导来控制体内物质生物转化的可能性。通过UPLC-MS/MS,研究了JNK抑制剂对肝细胞文拉法辛外来化合物代谢的影响。含有抗抑郁药的肝匀浆细胞中JNK的阻断伴随着其生物转化强度的增加。细胞悬浮液中O-去甲基文拉法辛单一药理活性代谢物的形成及其进一步的化学转化显著增加。实验数据表明JNK抑制剂显著诱导文拉法辛代谢。JNK抑制剂的这些特性可用于开发一种表征抗抑郁治疗的新方法。此外,研究结果还表明,研究细胞内信号分子(特别是丝裂原活化蛋白激酶)的活性调节剂有望开发出控制外来化合物转化过程的方法,并创造出一类新型药物——靶向药物代谢调节剂。
并且肿瘤中超过5个gRNA减少2倍的63个基因座被认为是阳性候选者(图4b,扩展数据图4c和补充表9)。通过Hi-C分析定义拓扑相关域(TAD)(图4c),并选择与每个SE包含在同一TAD中的345个候选靶基因。通过在ASPS-null细胞中下调的表达和功能注释进一步选择了56个候选基因(图4d和补充表10)。对Ccbe1、Pdgfb、Rab27a、Syngr1、Sytl2和Vwf六个候选基因进行了体内验证试验(扩展数据图4d)。验证每个基因有效敲除后(扩展数据图4e),将肿瘤克隆移植到裸鼠体内。尽管体外增殖率相当(扩展数据图 4f),但 Pdgfb、Rab27a、Sytl2 和
摘要:基因组编辑领域始于酵母中巨核酸酶(如LAGLIDADG家族归巢核酸内切酶)的发现。继转录激活因子样效应核酸酶和锌指核酸酶发现之后,最近发现的成簇的规律间隔的短回文重复序列(CRISPR)/CRISPR相关蛋白(Cas)系统为基因编辑领域的应用打开了新的窗口。本文,我们回顾了不同的Cas蛋白及其相应的特点包括优缺点,并概述了不同的核酸内切酶缺陷型Cas蛋白(dCas)衍生物。这些dCas衍生物由核酸内切酶缺陷型Cas9组成,其可与不同的效应结构域融合以执行不同的体外应用,如追踪、转录激活和抑制以及碱基编辑。最后,我们回顾了这些 dCas 衍生物在体内的应用,并讨论了它们在体内进行基因激活和抑制的潜力,以及它们未来在人类治疗中的潜在用途。
顺式调控元件编码基因组蓝图,确保基因表达的正确时空模式,这对于适当的发育和对环境的反应必不可少。越来越多的证据表明,基因表达的变化是真核生物表型新颖性的主要来源,包括哺乳动物的疾病和癌症等急性表型。此外,在较长的进化时间尺度上影响顺式调控序列的遗传和表观遗传变异已成为形态分化和局部适应研究中反复出现的主题。在这里,我们讨论了各种顺式调控元件的功能和用于识别各种顺式调控元件的方法,以及它们在植物发育和对环境的反应中的作用。我们重点介绍了利用植物发育和环境反应背后的顺式调控变异进行作物改良的机会。尽管对植物顺式调控机制的全面了解落后于对动物的了解,但我们展示了一些突破性的发现,这些发现深远影响了植物生物学并塑造了对真核生物转录调控的整体理解。
通过化学诱导二聚化 (CID) 进行基因调控对生物医学研究很有用。然而,CID 工具的数量、类型、多功能性和体内应用有限。在这里,我们展示了针对嵌合体的可扩展 CID (PROTAC-CID) 平台的蛋白水解,通过系统地设计可用的 PROTAC 系统进行可诱导的基因调控和基因编辑。此外,我们开发了正交 PROTAC-CID,可以在梯度水平上微调基因表达或使用不同的逻辑门控操作多路复用生物信号。将 PROTAC-CID 平台与基因电路结合,我们实现了 DNA 重组酶、碱基编辑器和主要编辑器的数字诱导表达,用于瞬时基因组操作。最后,我们将紧凑的 PROTAC-CID 系统打包到腺相关病毒载体中,用于体内诱导和可逆的基因激活。这项工作提供了一个多功能的分子工具箱,扩大了人类细胞和小鼠中化学诱导基因调控的范围。