• 转录调控由与启动子和增强子元件结合的转录因子 (TF) 协调 • 远端增强子可能距离启动子 >1Mb,通过染色质环路进行物理相互作用 • 1D 表观基因组数据(染色质可及性、组蛋白标记)映射候选增强子元件的存在但不映射它们的连接性
摘要 在胚胎干细胞 (ESC) 中,核心转录因子 (TF) 网络建立了多能性所必需的基因表达程序。为了解决四种关键 TF 之间的相互作用如何促进小鼠 ESC 中的顺式调控,我们分析了两个由 SOX2、POU5F1 (OCT4)、KLF4 和 ESRRB 的结合位点组成的大规模并行报告分析 (MPRA) 文库。合成的顺式调控元件与具有可比结合位点配置的基因组序列之间的比较揭示了调控语法的某些方面。合成元件的表达受结合位点的数量和排列的影响。这种语法对基因组序列的作用很小,因为基因组序列的相对活性最好通过预测的结合位点占用率来解释,而与结合位点身份和定位无关。我们的结果表明,转录因子结合位点 (TFBS) 的影响受位点顺序和方向的影响,但在基因组中,TF 的整体占用率是活性的主要决定因素。
驯化过程需要将野生形态快速转化为人类选择的栽培形态。这一过程通常通过改变基因调控来实现,然而,顺式和反式调控变异在作物果实驯化中的作用尚无明确模式。利用等位基因特异性表达和网络分析,我们描述了辣椒野生和栽培品种的调控模式和基因表达的遗传,辣椒是一种果实形态变化显著的作物。我们认为,与栽培形式相关的基因表达差异最好由顺式调控中心通过反式调控级联起作用来解释。我们表明,在栽培辣椒中,与果实形态相关的基因表达相对于野生近缘种的基因表达部分是隐性的,这与杂交果实表型一致。栽培辣椒果实成熟和生长基因表达的减少表明,在其驯化过程中发生了功能丧失的选择。反式调控变化是大多数表现出调控差异的基因的基础,并且对基因表达的影响比顺式调控变体更大。对选定的顺式调控基因(包括 ARP9 和 MED25)的网络分析表明,它们与许多参与器官生长和果实成熟的转录因子相互作用。与顺式调控变体相关的差异表达基因及其与下游反式作用基因的相互作用有可能驱动野生果实和栽培果实之间观察到的形态差异,并为辣椒驯化过程中的形态转变提供一种有吸引力的机制。
课程信息 讲座:周二和周四:上午 8:30 – 10:00;1 月 16 日星期四至 4 月 22 日星期二。课程在 CRB 的奥地利礼堂举行。 小组讨论:1 月 23 日星期四至 4 月 25 日星期五。学生每周选择一个讨论课程并参加该课程。必须出勤和参与。 第 1 节:周四上午 10:00 – 11:00 待定;周四上午 10-11 点在 701 BRB 第 2 节:周四上午 10:00 – 11:00 待定;周四上午 10-11 点在 801 BRB 第 3 节:周四下午 3:30 – 4:30 待定;每周四下午 3:30–4:30 在 801 BRB 第四场:每周四下午 3:30 – 4:30 待定;每周四下午 3:30–4:30 在 501 BRB 第五场:每周五上午 11:00 – 12:00 待定;每周五中午 11-12 点在 801 BRB(4 月 25 日在 301 BRB) 第六场:每周五上午 11:00 – 12:00 待定;每周五中午 11-12 点在 1413 BRB 第七场:每周五下午 3:30 – 4:30 待定;每周五下午 3:30–4:30 在 301 BRB 第八场:每周五下午 3:30 – 4:30 待定;周五下午 3:30–4:30 在 701 BRB 考试:将有三场考试,分别为 2 月 20 日、3 月 27 日和 4 月 29 日上午 8:00 至上午 10:00。考试将在助教的监督下在 Canvas 上进行。考试将采用“开放式笔记”形式。您可以带来并查阅课堂笔记,但不能使用教科书、互联网或任何形式的人工智能。 期末成绩:课程的期末成绩是三场考试的综合成绩,每场考试占 25%,助教在小组讨论期间对课堂参与的评分占剩余的 25%。期末成绩 ≥ 90 将获得“A”,80 至 89.9 之间的成绩为“B”,低于 80 的成绩为 B- 或 C。往年,平均期末成绩约为 87,中位数约为 88。如果今年的平均分和中位数明显较低,课程主任将考虑调整评分方案以利于该班级。办公时间:课程主任和助教将在讲座后或小组讨论期间回答有关课程的问题和疑虑。课程主任:Roberto Bonasio:roberto@bonasiolab.org
合成生物学领域的主要目标是开发能够通过激活治疗相关的细胞功能来响应用户定义的输入的工具。响应外部刺激的基因转录和调控是正在探索的这些细胞功能中最强大和用途最广泛的功能之一。受嵌合抗原受体 (CAR) T 细胞疗法成功的推动,基于跨膜受体的平台因其感知细胞外配体并随后激活细胞内信号转导的能力而受到欢迎。跨膜受体与转录激活平台的整合尚未发挥其全部潜力。质粒 DNA 的瞬时表达通常用于体外探索基因调控平台。然而,能够靶向治疗相关的内源性或稳定整合基因的应用更具临床意义。基因调控可能允许工程细胞进入感兴趣的组织并将功能性蛋白质分泌到细胞外空间或分化为功能性细胞。调节转录的跨膜受体有可能在包括癌症治疗和再生医学在内的众多应用中彻底改变细胞疗法。在这篇综述中,我们将研究当前控制哺乳动物细胞转录的工程方法,重点关注可以响应细胞外信号选择性激活的系统。我们还将推测这些技术的潜在治疗应用,并研究有希望扩展其功能并加强对细胞疗法中基因调控的控制的方法。
Mimi Zou 和 Lu Zhang 详细分析了中国对生成人工智能 (GenAI) 的监管回应,重点关注 2023 年 7 月出台的《生成人工智能服务管理暂行办法》(“暂行办法”)。这些办法标志着中国在规范包括法学硕士在内的 GenAI 技术快速发展和部署方面迈出了重要一步。5 作者强调了这些措施的双重目标:促进技术创新以保持中国在全球人工智能竞赛中的竞争优势,同时应对这些技术带来的风险——特别是在内容安全、国家安全和社会稳定方面。事实上,暂行办法反映出一种谨慎但雄心勃勃的方法,它制定了规则,要求 GenAI 提供商确保其服务遵守中国严格的内容监管标准。这包括防止生成有害或非法内容的机制,并要求服务提供商在部署其技术之前进行安全评估。与此同时,《办法》旨在通过提供清晰的监管体系并鼓励企业为国内人工智能生态系统的发展做出贡献来促进创新。然而,这种平衡之举也揭示了技术发展与降低社会和政治风险之间的内在冲突,这并非中国独有的挑战,而是全球法律硕士(LLM)监管斗争的缩影。作者认为,尽管中国的监管框架侧重于内容控制和安全,但它可能会对全球人工智能治理产生重大影响。
随着对乳酸化研究的不断深入,蛋白质乳酸化修饰 越来越受到研究者的关注。而乳酸生成及代谢异常、基 因表达、修饰串扰等因素影响着乳酸化修饰动态平衡过 程。乳酸化修饰不仅在正常的细胞活动中发挥重要作用, 也参与调控年龄相关性疾病的发病机制。组蛋白乳酸化 主要通过调节相关基因的转录和表达来影响细胞的功能 状态,非组蛋白乳酸化则可以通过促进EndoMT,激活 信号通路,亚细胞定位和翻译后修饰串扰等功能,导致 年龄相关性疾病的发生和发展。然而,乳酸化修饰的调 控机制的研究尚且处于起步阶段,仍有许多未知功能和 新的修饰酶有待进一步探索,目前这些研究有助于揭示 乳酸化修饰的分布和调控机制以及在多种年龄相关性疾 病中的作用效果,并以此为依据转化为可应用于临床治 疗的手段是亟待解决的问题 。
单细胞基因组学是研究大脑等异质组织的有力工具。然而,人们对遗传变异如何影响细胞水平基因表达的了解甚少。为了解决这个问题,我们将单核、多组学数据集统一处理成一个资源,该资源包含来自 388 个人的前额叶皮层的 280 多万个细胞核。对于 28 种细胞类型,我们评估了基因家族和药物靶标之间表达和染色质的群体水平变化。我们确定了 55 万多个细胞类型特异性调控元件和 140 多万个单细胞表达数量性状位点,我们用它们来构建细胞类型调控和细胞间通讯网络。这些网络体现了衰老和神经精神疾病中的细胞变化。我们进一步构建了一个综合模型,准确推断单细胞表达并模拟扰动;该模型优先考虑了约 250 种疾病风险基因和与相关细胞类型的药物靶标。
Prashant S. Emani 1,2†,Jason J. Liu 1,2†,Declan Clarke 1,2†,Matthew Jensen 1,2†,Jonathan Warrell 1,2†,Chirag Gupta 3,4†,Cagat Lee 1,5†Ay Dursun 1,2 Dursun 1,2 GALEEV 1,2,AHYEON HWANG 5,6,YUNYANG LI 2,7,PENGYU NI 1,2,Xiao ZD E JAKEN E E. PSICE 1,2 LAV BENDL 9,10,11,12,Lucy Bicks 13,Tanima Chatterjee 1,2 1 Gan DI 9,12,16,Sophia Gaynor-Gillett 14,17,Jennifer Grundman 13,Natalie Hawken 13,Ella Henry 1,2,Gabriel E. Hoffman 9,10,11,12,18,19 Junhao Liu 5,Shuang Liu 4,Shaojie MA 21,22,Michael Margolis 13,Samantha Mazariegos 13,Jill Moore 2,Edha Jennifer 24 3,Milos Pjanic 9,10,11,11,11,12 Megan Spector 14,Brisley Wasley Jilrie Rosema 3,Gaoyuan Wang 1,2,Yan Xia 1,2,Shaohua Xiao 13,Andrew C. Yang 1,2,Suesen Zheng 1,2,Michael J. Gandal 26,27,28,29,30 Hiping Weng 23,Kevin P. White 33,Hyejung赢得34,Matthew J. Girgenti 25,35,36*,Jing Zhang 5*,Daifeng Wang 18,4,337*,,2,7,24,39*
引言肺癌是全球癌症发病率和死亡率的主要原因(1)。肺癌的总体 5 年生存率仍然很低(2)。先前的分子研究已经确定了几种致癌驱动因素,并促进了由 EGFR、ALK、RET 或 ROS1 改变驱动的肺癌令人满意的治疗方法的开发(3)。然而,对于 KRAS 获得功能突变,有效的治疗方法很少,大约 25% 的肺癌病例会发生这种突变。对 KRAS 蛋白结构、动力学和信号转导的了解仍未得到满足,这在很大程度上阻碍了直接或间接针对该致癌基因的特定抑制剂的开发。选择性 KRAS 抑制剂 (KRASi) sotorasib 可与突变半胱氨酸残基形成稳定的共价键,特异性靶向 KRAS(G12C),已获美国食品药品管理局批准,用于携带 KRAS(G12C) 突变的局部晚期或转移性非小细胞肺癌的二线治疗 (4)。然而,治疗期间不可避免地会出现耐药性 (5, 6)。重要的是,肺癌中其他经常突变的 KRAS 形式,如 KRAS(G12D) 和 KRAS(G12V),仍然无法用药 (7)。靶向 KRAS 的下游效应物,如 MEK,