基因工程是出于实际目的(例如生产药品、农作物和牲畜)对基因进行操纵。基因工程涉及在生物体的 DNA 中插入、删除或修改基因。此过程可以通过基因克隆、DNA 测序和基因组编辑等各种方法实现。生物技术是利用基因工程来解决实际问题,例如提高作物产量、开发新疫苗和生产生物燃料。基因的功能对于遗传信息的转移、基因表达和调控、遗传多样性和适应性以及基因工程和生物技术至关重要。
图 1 单细胞测序分析的一般工作流程。(a)通过分离原生质体(小绿圈)将组织或器官解离成单个细胞;(b)将原生质体装入封装单个原生质体(小绿圈)的微流体系统中,其中试剂用于标记具有不同条形码(较大的多色圆圈)的转录本,所述条形码可识别转录本来源的细胞,也可以通过此过程添加其他条形码,例如 UMI;(c)然后汇集带条形码的转录本并使用短读技术进行测序;(d)然后处理测序读取以根据文库制备期间添加的条形码序列将每个转录本分配给来源细胞; (e) 所有细胞的转录组都经过降维(例如 tSNE 或 UMAP),其中具有相似转录组谱的细胞将在二维空间中绘制得更紧密,而具有不太相似转录组的细胞将绘制得更远,并且可以通过算法识别具有相似转录组的细胞簇。在此示例中,图上的每个点代表一个细胞,点的颜色代表该细胞被分配到的簇。(f)细胞簇可以根据已知标记基因的丰度或与已建立细胞类型的转录组的整体相似性被表征为已知细胞类型;如果没有已知标记与观察到的转录组谱相匹配,细胞簇也可以被描述为未知的或新的。在此示例中,重建组织中的细胞被着色以反映图 (e) 中识别的假设转录组簇
91 张晓琴 内科学 余晨 AT1R/β-arrestin 信号通路调控LOX 介 导肾脏间质纤维化的机制研究 学术学位
图 1:AI/ML 技术的维恩图 ................................................................................................................ 9 图 2:Gartner 人工智能技术成熟度曲线 ................................................................................................ 12 图 3:由于 ML 分类算法的性质,即使是强大的测试也可能无法检测到缺陷。在此示例中,两个缺陷位于测试用例之间,因此未被发现。 ................................ 15 图 4:ML 组件开发生命周期 ...................................................................................................... 17 图 5:[25] 引入的快速梯度符号法,但也是一个可能具有误导性的示例 [26] ............................................................................................................................. 23 图 6:对抗性 T 恤可以避免被 YOLOv2 系统检测到 [27] .................................................................... 24 图 7:示例 ROC 曲线 ............................................................................................................................. 80 图 8:显示 ML 分类器(垂直线)和基本事实(红色代表 FALSE,绿色代表 TRUE)的二元分类器 ............................................................................................................. 81 图 9:准确率(左)是所有检测到的正例中真正例的比例,召回率(右)是所有基本事实正例中真正例的比例。 ........................................... 81 图 10:IoU = 0.5 的示例预测 .............................................................................................. 83 图 11:基于 CBI 的可靠性声明的示例 CAE 结构 .............................................................................. 87 图 12:使用贝叶斯推理可以增加对产品的信心 ...................................................................... 88 图 13:满足第 B.3.2.1 节中所述约束的两个示例先验分布 ......................................................................................................... 89 图 14:安全监视器架构 ............................................................................................................. 91 图 15:监视器可行性 ............................................................................................................................. 91
Yeo, S. J.、Ying, C.、Fullwood, M. J. 和 Tergaonkar, V. (2023)。拓扑关联域中非编码 RNA 的新兴调控机制。Trends in Genetics,39(3),217-232。https://dx.doi.org/10.1016/j.tig.2022.12.003
Liam D. Cato 1,2,3, *,Rick Li 1,2,3, *,Henry Y. Lu 1,2,3, *,Fulong Yu 1,2,3,Mariel Wissman 1,2,3,Baraka S.Mkumbe 4,5,6,4,5,6 7,Paola G. Bronson 11,Dirk S. Paul 12,13,Emily Kawabata 12,William J. ASTLE 12,14,15,16,Francois Aguet 3,Kristin 3 Ardille de Portilla,Portilla Portilla Portilla,18 Guolian Kang 19,Yingze Zhang Zhang 20 ETT 23,Allison Ashley-Koch,23,Marilyn J. Telen 23,Brian Custer,24,Shannon,26 Luana Dinardo 27,28,Ester C. Sabino 28,Paula Loureiro 29,AnnaBárbaracarneiro-Proietti 30 Angelika Hammer-Alvier Al。
摘要:环境和职业暴露于六价铬、镍和镉等重金属是全球主要的健康问题。一些重金属是已证实的人类致癌物。DNA损伤、基因表达失调和异常的癌症相关信号传导等多种机制已被证明会导致金属诱发的致癌作用。然而,重金属诱发致癌和血管生成的分子机制仍不完全清楚。近年来,越来越多的研究表明,除了基因毒性和基因突变外,表观遗传机制在金属诱发的癌症中起着至关重要的作用。表观遗传学是指在不改变DNA序列的情况下对基因组进行的可逆性修饰;表观遗传修饰通常涉及DNA甲基化、组蛋白修饰、染色质重塑和非编码RNA。表观遗传调控对于维持正常的基因表达模式至关重要;表观遗传修饰的破坏可能导致细胞功能改变,甚至恶性转化。因此,异常的表观遗传修饰广泛参与金属诱导的癌症形成、发展和血管生成。值得注意的是,表观遗传机制在重金属诱导的致癌作用和血管生成中的作用仍不清楚,迫切需要进一步研究。在这篇综述中,我们重点介绍了目前在理解表观遗传机制在重金属诱导的致癌作用、癌症进展和血管生成中的作用方面的进展。
Liam D. Cato 1,2,3, *,Rick Li 1,2,3, *,Henry Y. Lu 1,2,3, *,Fulong Yu 1,2,3,Mariel Wissman 1,2,3,Baraka S.Mkumbe 4,5,6,4,5,6 7,Paola G. Bronson 11,Dirk S. Paul 12,13,Emily Kawabata 12,William J. ASTLE 12,14,15,16,Francois Aguet 3,Kristin 3 Ardille de Portilla,Portilla Portilla Portilla,18 Guolian Kang 19,Yingze Zhang Zhang 20 ETT 23,Allison Ashley-Koch 23,Marilyn J. Telen 23,Brian Custer,24,Shannon,26 Luana Dinardo 27,28,Ester C. Sabino 28,Paula Loureiro 29,AnnaBárbaracarneiro-Proietti 30 Ercher 34,Vivien A. Sheehan 35,Mitchell J. Weiss 19,Lude Franke 9,36,BjörnNilsson3,17,18,Adam S. Butterworth 12,13,14,37,38
CRISPR 干扰(CRISPRi)和 CRISPR 激活(CRISPRa)由于其设计简单且有效,已成为控制细菌基因表达的普遍方法。通过调节目标基因的转录,CRISPRi/a 可以动态地设计细胞代谢,实现转录调控电路,或阐明从较小的靶向文库到整个基因组文库的基因型-表型关系。虽然 CRISPRi/a 主要在模型细菌大肠杆菌和枯草芽孢杆菌中建立,但越来越多的研究表明这些工具可以扩展到其他细菌物种(这里泛指非模型细菌)。在这篇小型评论中,我们讨论了导致 CRISPRi/a 工具在不同非模型细菌中创建速度较慢的挑战,并总结了这些方法在细菌门中的现状。我们发现,尽管在非模式微生物中建立新型 CRISPRi/a 存在潜在困难,但文献中已报道了 8 个细菌门类中 190 多个近期实例。大多数研究都侧重于工具开发或使用这些 CRISPRi/a 方法来探究基因功能,而将 CRISPRi/a 基因调控应用于代谢工程或高通量筛选和选择的例子较少。迄今为止,大多数 CRISPRi/a 报告都是针对非模式细菌物种的常见菌株开发的,这表明在未驯化细菌中建立这些遗传工具仍然存在障碍。更有效和更通用的方法将有助于实现基于 CRISPR 的可编程转录控制在各种细菌中的巨大潜力。
果实作为被子植物特有的器官,为人类提供丰富的膳食纤维、维生素等营养物质,是健康膳食结构的重要组成部分(Giovannoni,2001;Chen et al.,2020)。果实成熟是果实食用品质形成的关键时期,是一个涉及果实质地变化、色素积累、香气和风味物质形成、抗性降低等性状的复杂发育过程,受诸多内外部因素的调控(Giovannoni,2004;Ji and Wang,2023)。内外部因素主要有转录因子和激素等,外外部因素主要有各种生物因素和非生物因素。根据呼吸模式的不同,果实可分为跃变型和非跃变型两类(Mcmurchie et al.,1972)。在果实成熟过程中,呼吸强度和乙烯释放量出现伴随爆发,如番茄、苹果和香蕉等,而非呼吸强度和乙烯释放量变化不显著,如草莓、葡萄、柑橘等( Shinozaki et al.,2018 )。乙烯生物合成的两个系统(系统I和系统II)在果实发育和成熟过程中起着至关重要的作用。未成熟的果实和植物其他器官持续产生低浓度的乙烯,即乙烯背景浓度。系统I乙烯以负反馈方式调节背景浓度的乙烯合成并参与果实发育,系统II乙烯以负反馈方式产生。