ATI Match -MakerTM MM 100 双向立体声接口在匹配消费级和专业级设备的同时,保持音频清晰纯净。告别负载、失真、嗡嗡声循环、射频拾取和高频衰减问题。Match -MakerTM 解决了这些问题,总谐波失真 (THD) 低于 0.02%,20Hz 至 20kHz 响应为 +01 -0.25dB,动态范围超过 98dB。Match-Maker TM 性能卓越,这要归功于变压器平衡输出等设计特点。DP100 定价 299.00 美元 DP100 单向立体声接口旨在将消费级数字光盘播放设备或其他非平衡输出产品隐形连接到专业级,同时完全不降低数字系统的卓越性能。这是由其 102dB 动态范围、平坦频率响应(20Hz 至 20kHz,+.25dB)和 0.005% THD 保证的。279.00 美元标价
摘要:本文提出了一种具有宽调谐范围的超低功耗 K 波段 LC-VCO(压控振荡器)。基于电流复用拓扑,利用动态背栅偏置技术来降低功耗并增加调谐范围。利用该技术,允许使用小尺寸的交叉耦合对,从而降低寄生电容和功耗。所提出的 VCO 采用 SMIC 55 nm 1P7M CMOS 工艺实现,频率调谐范围为 22.2 GHz 至 26.9 GHz,为 19.1%,在 1.2 V 电源下功耗仅为 1.9 mW–2.1 mW,占用核心面积为 0.043 mm 2 。在整个调谐范围内,相位噪声范围从 -107.1 dBC/HZ 到 -101.9 dBc/Hz (1 MHz 偏移),而总谐波失真 (THD) 和输出功率分别达到 -40.6 dB 和 -2.9 dBm。
摘要 - 在功率应用中广泛使用了多重逆变器,以在中等或高压水平下以低谐波失真(THD)的形式获得低。已经有几种技术可以应用于多级逆变器,以便在输出电压中获得较低的THD。选择性谐波消除(SHE)技术是这些技术之一,并且在电力电子中也具有广泛的应用领域。它也是常规PWM技术的替代方法,包括阶梯电压波形的非线性方程。此外,她的技术还提供了控制输出电压的有效价值。在本文中,已提出了减少开关数量的多级逆变器,该逆变器已提出了系统成本的降低,并且非线性方程的解决方案已通过遗传算法(GA)软件进行了优化。模拟和分析的结果清楚地表明,提出的基于GA的技术可以消除所需的谐波顺序。
ATI Match -MakerTM MM 100 双向立体声接口在匹配消费级和专业级设备的同时,保持音频清晰纯净。告别负载、失真、嗡嗡声循环、射频拾取和高频衰减问题。Match -MakerTM 解决了这些问题,总谐波失真 (THD) 低于 0.02%,20Hz 至 20kHz 响应为 +01 -0.25dB,动态范围超过 98dB。Match-Maker TM 性能卓越,这要归功于变压器平衡输出等设计特点。DP100 定价 299.00 美元 DP100 单向立体声接口旨在将消费级数字光盘播放设备或其他非平衡输出产品隐形连接到专业级,同时完全不降低数字系统的卓越性能。这是由其 102dB 动态范围、平坦频率响应(20Hz 至 20kHz,+.25dB)和 0.005% THD 保证的。279.00 美元标价
Sigma-delta 调制在高分辨率 A/D 和 D/A 转换器中发挥着重要作用。转换过程中可实现更高的 SNR 水平,因此更适合用于音频 CD 格式。其在无线技术中发挥着重要作用,例如长期演进高级版 (LTE-Advanced)、IEEE802.11ac、GSM 和 CDMA 等,这些技术需要带宽大的高速 ADC,同时降低总体成本并减少由毛刺引起的谐波失真 [1- 6]。其他应用包括仪器仪表、地震活动测量、语音、视频、ISDN、数字蜂窝无线电、频率合成器、色谱分析和生物医学应用 [7- 8]。A/D 和 D/A 转换过程中会产生量化噪声,导致信号重建不正确 [9]。Sigma-delta 调制器利用噪声整形技术,并引入过采样,从信号带宽中去除噪声并将其传输到更高的频率区域 [10]。
ACEEE – 美国能源效率经济委员会 A&E – 建筑与工程 aMW – 平均兆瓦 BPA – 邦纳维尔电力管理局 C&I – 商业和工业 CEE – 能源效率联盟 DOE – 美国能源部 EPA – 美国环境保护署 ET – 新兴技术 FCRPS – 联邦哥伦比亚河电力系统 HMT – 谐波缓解变压器 HVAC – 供暖、通风和空调 kVA – 千伏安 LBNL – 劳伦斯伯克利国家实验室 LEED – 能源与环境设计先锋 NEEP – 东北能源效率伙伴关系 NEMA – 美国电气制造商协会 OPAL – 针对应用负载优化的性能 RMS – 均方根 THD – 总谐波失真 USD – 美元 WE – 周末 WD – 工作日 WSU – 华盛顿州立大学能源计划
摘要:本文介绍了一种低跨导(0.62-6.28 nS)和低功耗(28-270 nW)的运算跨导放大器 (OTA),适用于生物医学传感器接口中的低频模拟前端。所提出的 OTA 基于通道长度调制效应实现了一种创新的高线性电压-电流转换器,可进行轨到轨驱动。在 1 V 电源和 1 V pp 非对称输入驱动下,电流-电压特性的线性误差为 1.5%,而输出电流的总谐波失真 (THD) 为 0.8%。对于对称 2 V pp 输入驱动,线性误差为 0.3%,而 THD 达到 0.2%。线性度对于失配和工艺电压与温度 (PVT) 变化具有很强的鲁棒性。跨导温度漂移为10 pS/◦C。原型电路采用180纳米CMOS工艺制造。
在采样期间,其中一个模拟输入内部连接到转换器的电容器阵列以存储模拟输入信号。在四个地址位被输入到输入数据寄存器后,转换器立即开始对所选输入进行采样。采样从 I/O CLOCK 的第四个下降沿开始。转换器保持采样模式,直到 I/O CLOCK 的第八个、第十二个或第十六个下降沿,具体取决于数据长度选择。在最后一个 I/O CLOCK 下降沿的 EOC 延迟时间之后,EOC 输出变为低电平,表示采样周期结束并且转换周期已开始。EOC 变为低电平后,可以更改模拟输入而不会影响转换结果。由于从最后一个 I/O CLOCK 的下降沿到 EOC 低电平的延迟是固定的,因此可以以固定速率数字化随时间变化的模拟输入信号,而不会因时序不确定性而引入系统谐波失真或噪声。
摘要本文介绍了基于微控制器正弦脉冲宽度调制方案的单相H桥逆变器的开发,用于住宅负载应用。减少常规逆变器的谐波内容的任务需要本研究论文。使用微控制器(AT-MEGA 328)生成电源开关启动信号。此外,微控制器能够存储所需的命令以生成必要的波形,以通过适当的设计控制H桥逆变器的幅度和频率。通过减少的总谐波失真,获得了纯正弦波和电流的正弦波。该逆变器旨在用于直流电源(电池)的独立式。在本文中,开发了一个框图,其中包含电池,H桥逆变器,升压变压器,L-C滤波器和控制系统。讨论了所有这些块。最后,生成和讨论MATLAB/SIMULINK模拟和实验结果。用48.5欧姆电阻载荷测试了1.2 KVA设计的原型,并发现电压TH的相等值小于220 VRMS的4.00%。
本文将基于 PSO 的 PI 控制应用于 APF 拓扑的系统切换功能。使用粒子群优化 (PSO) 方法对有源电力滤波器 (APF) 的比例和积分 (PI) 增益进行调整,以进行无功功率补偿和谐波抑制。传统的 PI 控制器需要更多的计算时间并且精度较低。使用瞬时有功和无功功率方案提取谐波负载电流。将使用 PSO 训练的 PI 控制器与传统 PI 控制器的性能指标(包括总谐波失真、无功功率、功率因数和电容器电压调节)进行了比较。PSO 具有快速收敛、最少的调整参数和快速执行来解决非线性问题的特点。传统的 PI 控制器被在线 PSO 训练的 PI 控制器所取代,目的是在非线性负载条件下增强 APF 中的直流电压跟踪。所提出的工作是在 sim-power system 工具箱中开发的,该工具箱是 Matlab/Simulink 中的一个软件包。