肝内胆管癌(ICC)是一种胆管癌,是一种罕见的恶性肿瘤,由于缺乏早期诊断和对常规Che-Marte疗法的抵抗力,预后较差。吉西他滨和顺铂的结合是通常尝试的一线治疗方法。然而,对化学疗法的耐药性的潜在机制知之甚少。我们通过研究人类ICC SCK细胞系中的动力学来解决此问题。在这里,我们报告说,葡萄糖和谷氨酰胺代谢的调节是SCK细胞中过度顺铂耐药性的关键因素。RNA测序分析显示,与Pap-Rental SCK(SCK WT)细胞相比,与顺铂耐药的SCK(SCK-R)细胞中的高富集细胞周期相关基因集评分。细胞周期进程与养分需求增加和癌症增殖或转移相关。通常,癌细胞取决于葡萄糖和谷氨酰胺的可用性,以生存和增殖。的确,我们观察到SCK-R细胞中Glut(葡萄糖转运蛋白),ASCT2(谷氨酰胺转运蛋白)和癌症进展标记的表达增加。因此,我们通过营养恒定抑制了SCK-R细胞中的代谢重编程。SCK-R细胞敏感到顺铂,尤其是在葡萄糖饥饿下。 谷氨酰胺酶-1(GLS1)是一种与癌细胞中肿瘤发生和进展有关的线粒体酶上调,在SCK-R细胞中被上调。 用GLS1抑制剂CB-839(telaglenastat)靶向GLS1有效地表达了癌症进展标记的表达。SCK-R细胞敏感到顺铂,尤其是在葡萄糖饥饿下。谷氨酰胺酶-1(GLS1)是一种与癌细胞中肿瘤发生和进展有关的线粒体酶上调,在SCK-R细胞中被上调。用GLS1抑制剂CB-839(telaglenastat)靶向GLS1有效地表达了癌症进展标记的表达。总的来说,我们的研究结果表明,抑制过多的抑制作用(模拟葡萄糖饥饿和GLS1抑制作用)的组合
pishiviricetes类包括感染真核生物的各种阳性单链RNA病毒。对人类来说重要的是,该阶级包括Picornaviridae,Coronaviridae和Caliciviridae家族,这些家族代表了人类急性发病的一些主要原因,1,是最普遍的感染者之一。picornaviruses是一个大型病毒家族,感染了人类和动物,其病理范围从常见感冒和乙型肝炎等轻度感染到更严重的疾病,包括脑膜炎和麻痹。在某些情况下,PICORNAVIRES病毒感染与自身免疫性疾病有关,例如心肌炎,抑制和多发性硬化症。2–6冠状病毒感染也涉及一系列严重程度,而孔囊病则是急性胃肠炎的主要原因,但免疫功能低下的个体可能会出现更严重的症状。8 pishiviricetes类的统一特征之一是一种高度结构保守的半胱氨酸蛋白酶,属于PA氏氏氏氏氏氏氏氏氏氏氏氏疗法(混合亲核蛋白的蛋白酶,
人类谷氨酰胺基环酶(HQC)引起了人们的关注,并成为阿尔茨海默氏病(AD)的潜在毒靶标,这是由于它通过翻译后的硫酸盐酸谷氨酸型淀粉样蛋白βββββββββ杆菌的临时涉及AD的病理。最近的2A期研究表明,基于竞争性苯咪唑的QC抑制剂PQ912,AD的效率的早期证据有希望,这也表现出了有利的安全性。这个发现引发了对AD治疗的新希望。在这篇综述中,我们构成了概述HQC抑制剂的发现和演变,对经典锌结合组(ZBG)的含量尤其感兴趣 - 近年来报道的化学物质。此外,我们重点介绍了几种高功率抑制剂,并讨论了QC抑制剂开发的新趋势和挑战,作为AD的替代性和有希望的疾病调整疗法。
增殖的癌细胞很大程度上依赖谷氨酰胺来存活和增殖。谷氨酰胺是 TCA 循环中脂质和代谢物合成的碳源,也是氨基酸和核苷酸合成的氮源。迄今为止,许多研究已经探索了谷氨酰胺代谢在癌症中的作用,从而为以谷氨酰胺代谢为靶点的癌症治疗提供了科学依据。在这篇综述中,我们总结了谷氨酰胺代谢每个步骤所涉及的机制,从谷氨酰胺转运蛋白到氧化还原稳态,并重点介绍了可用于临床癌症治疗的领域。此外,我们还讨论了癌细胞对以谷氨酰胺代谢为靶点的药物产生耐药性的机制,以及克服这些机制的策略。最后,我们讨论了谷氨酰胺阻断对肿瘤微环境的影响,并探索了最大限度发挥谷氨酰胺阻断剂作为癌症治疗效用的策略。
哺乳动物新皮层是最近的进化结构,与人类的认知能力较高有关。新皮层的大小和形状在妈妈的种类中也有所不同,甚至在灵长类动物中(Herculano-Houzel 2019; Rakic 2009; Zilles等,2013年)。与其他灵长类动物相比,人类在对现代人类的发展过程中获得了最扩展,最复杂的新皮层(Rakic 2009)。新皮质扩张取决于神经茎和祖细胞(NPC)的增殖能力以及随后的神经元产生(Cárdenasand Borrell 2020; Lamonica等,2012; Namba and Huttner 2017; Namba and Huttner 2017; Rash efters 2017; Rash及其他2019; Sun and Hevner 2014; sun and Hevner 2014;图》;1)。npc可以分为两个主要类别:顶端祖细胞(AP),主要由顶端radial胶质神经胶质(ARG,也称为心室径向胶质胶质,VRG)和基础祖细胞(BPS)组成,这些祖细胞(BPS)包括基础中间的祖先(BIPS)和基底radial Glia(也称为BRG)(BRG)(BR GLIA)(BR GLIA)(BR GLIA)(BR GLIA)(BR GLIA,ORADIAL,ORADIAL as COL)。AP和BP分别位于发育中的新皮层的心室(VZ)和室室(SVZ)中。arg主要在新皮层的早期发展期间扩大了数量,然后在中期到后期开始生产BP(Cárdenasand Borrell 2020; Namba and Huttner 2017; Sun and Hevner 2014)。自
摘要:复发儿童急性淋巴细胞白血病(CALL)的患者的预后仍然很差。治疗失败的主要原因是耐药性,最常见于糖皮质激素(GC)。泼尼松龙敏感和耐药性淋巴细胞之间的分子差异未得到充分研究,从而排除了新型和靶向疗法的发展。因此,这项工作的目的是阐明匹配的GC敏感和耐药细胞系之间分子差异的至少某些方面。为解决这个问题,我们进行了整合的转录组和代谢组学分析,该分析表明,缺乏对泼尼松龙的反应可能是由于氧化磷酸化,糖溶解,氨基酸,丙酮酸和核苷酸生物合成的变化而受到的基础,以及MTORC1和MyC的激活以及Myc的激活,以及Myc的激活,以及Myc的激活。试图通过三种不同的策略探索我们分析中抑制一种打击的潜在治疗作用,以三种不同的策略为目标,它们针对谷氨酰胺 - 谷氨酸 - α-酮戊二酸轴轴,所有策略都受损了,这些策略都受损了,这些策略受损,线粒体呼吸和ATP产生和诱导了凋亡。因此,我们报告说,泼尼松龙的抗性可能伴随着相当大的转录和生物合成程序的重新布线。在这项研究中确定的其他可药物靶标的抑制作用抑制谷氨酰胺代谢在GC敏感的敏感性中呈现了一种潜在的治疗方法,但更重要的是,在GC耐药的呼叫细胞中。最后,在复发的背景下,这些发现可能在临床上具有相关性 - 在公开可用的数据集中,我们发现基因表达模式表明,体内耐药性的特征在于与我们在体外模型中发现的相似代谢失调。
摘要:第XIIIA(FXIIIA)是一种主要治疗兴趣的转谷氨酰胺酶,这是由于其在血液凝结级联反应中的重要作用而发展抗凝剂。虽然已经报道了许多FXIIIA抑制剂,但由于缺乏代谢稳定性和对转谷氨酰胺酶2(TG2)的选择性低,因此未能达到临床评估。此外,用于研究FXIIIA活性和定位的化学工具非常有限。为了消除这些缺点,我们设计,合成和评估了21个新型FXIIIA抑制剂的库。亲电战争头,接头长度和疏水单位在小分子和肽支架上有所不同,以优化同工酶的选择性和效力。然后,将先前报道的FXIIIA抑制剂改编成具有若丹明B部分的探针设计,从而产生创新的KM93作为首次已知的溶液探针,旨在选择性地标记具有较高功能的活性FXIIIA(k Inact / k Inact / k I = 127,300 m-1-1-1-5-5-5)。探针KM93在骨髓巨噬细胞中促进了荧光显微镜研究,在细胞培养中标记具有较高效率和选择性的FXIIIA。这些新型抑制剂和探针的结构 - 活动趋势将有助于对活动,抑制和定位FXIIA的未来研究。
1 土耳其科尼亚塞尔丘克大学药学院药物化学系 * 通讯作者电子邮件:kucukogluk35@hotmail.com 要点 人类谷氨酰胺环化酶 (hQC) 有两种同工型,即分泌型 QC (也称为 sQC) 和高尔基定位型 QC (也称为 isoQC 或 gQC)。 hQC 通过释放氨或水介导 N 端谷氨酰胺或谷氨酸残基的环化。 在某些疾病中,QC 的分泌水平会增加,例如阿尔茨海默氏症 (AD)、亨廷顿氏病 (HD)、黑色素瘤、甲状腺癌、动脉粥样硬化的快速形成、化脓性关节炎。 近年来,发现抑制 QC 的新药被认为是预防和治疗许多生理问题和疾病的重要方法。 已发现具有咪唑骨架的化合物具有抑制 QC 的潜力。这些药物中最引人注目的一种是瓦罗谷氨酸司他,目前正处于阶段研究中。 ARTICLEINFO 收稿日期:2022 年 5 月 21 日 接受日期:2022 年 6 月 25 日 发表日期:2022 年 7 月 15 日 关键词:阿尔茨海默氏症淀粉样蛋白β谷氨酰胺环化酶焦谷氨酸修饰瓦罗谷氨酸司他
摘要:多聚谷氨酰胺 (polyQ) 疾病,包括亨廷顿氏病,是一组由 CAG 重复扩增引起的晚发型进行性神经系统疾病。尽管最近有许多研究调查了 polyQ 疾病的病理特征和发展,但仍有许多问题尚未得到解答。新基因编辑技术的进步,尤其是 CRISPR-Cas9 技术,对于生成相关的 polyQ 模型具有不可否认的价值,这为研究过程提供了实质性支持。在这里,我们回顾了如何使用这些工具来纠正致病突变或创建具有不同 CAG 重复数的同源细胞系。我们描述了各种细胞模型,例如 HEK 293 细胞、患者来源的成纤维细胞、人类胚胎干细胞 (hESC)、诱导性多能干细胞 (iPSC) 和使用基因组编辑技术生成的动物模型。
摘要:多聚谷氨酰胺脊髓小脑共济失调 (SCA) 是由单个基因编码区胞嘧啶-腺嘌呤-鸟嘌呤重复扩增引起的六种常染色体显性共济失调的异质性群体。目前,这些疾病尚无治愈或减缓疾病的治疗方法,但它们的单基因遗传为基因治疗策略的发展提供了理论依据。事实上,RNA 干扰策略已在 SCA1、SCA3、SCA6 和 SCA7 的细胞和/或动物模型中显示出有希望的发现。此外,反义寡核苷酸疗法已在 SCA1、SCA2、SCA3 和 SCA7 模型中提供了令人鼓舞的概念证明,但它们尚未进入临床试验。相反,基因编辑策略,例如成簇的规律间隔的短回文重复序列 (CRISPR/Cas9),已被引入