摘要:第XIIIA(FXIIIA)是一种主要治疗兴趣的转谷氨酰胺酶,这是由于其在血液凝结级联反应中的重要作用而发展抗凝剂。虽然已经报道了许多FXIIIA抑制剂,但由于缺乏代谢稳定性和对转谷氨酰胺酶2(TG2)的选择性低,因此未能达到临床评估。此外,用于研究FXIIIA活性和定位的化学工具非常有限。为了消除这些缺点,我们设计,合成和评估了21个新型FXIIIA抑制剂的库。亲电战争头,接头长度和疏水单位在小分子和肽支架上有所不同,以优化同工酶的选择性和效力。然后,将先前报道的FXIIIA抑制剂改编成具有若丹明B部分的探针设计,从而产生创新的KM93作为首次已知的溶液探针,旨在选择性地标记具有较高功能的活性FXIIIA(k Inact / k Inact / k I = 127,300 m-1-1-1-5-5-5)。探针KM93在骨髓巨噬细胞中促进了荧光显微镜研究,在细胞培养中标记具有较高效率和选择性的FXIIIA。这些新型抑制剂和探针的结构 - 活动趋势将有助于对活动,抑制和定位FXIIA的未来研究。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年1月19日。 https://doi.org/10.1101/2023.01.19.524776 doi:Biorxiv Preprint
1 土耳其科尼亚塞尔丘克大学药学院药物化学系 * 通讯作者电子邮件:kucukogluk35@hotmail.com 要点 人类谷氨酰胺环化酶 (hQC) 有两种同工型,即分泌型 QC (也称为 sQC) 和高尔基定位型 QC (也称为 isoQC 或 gQC)。 hQC 通过释放氨或水介导 N 端谷氨酰胺或谷氨酸残基的环化。 在某些疾病中,QC 的分泌水平会增加,例如阿尔茨海默氏症 (AD)、亨廷顿氏病 (HD)、黑色素瘤、甲状腺癌、动脉粥样硬化的快速形成、化脓性关节炎。 近年来,发现抑制 QC 的新药被认为是预防和治疗许多生理问题和疾病的重要方法。 已发现具有咪唑骨架的化合物具有抑制 QC 的潜力。这些药物中最引人注目的一种是瓦罗谷氨酸司他,目前正处于阶段研究中。 ARTICLEINFO 收稿日期:2022 年 5 月 21 日 接受日期:2022 年 6 月 25 日 发表日期:2022 年 7 月 15 日 关键词:阿尔茨海默氏症淀粉样蛋白β谷氨酰胺环化酶焦谷氨酸修饰瓦罗谷氨酸司他
阿尔茨海默氏病(AD)研究的中心目标之一是鉴定出临床相关的药物靶标。在AD小鼠模型中,大量的潜在分子靶标在体外和体内都非常有效。但是,在ADFILD中缺乏转化为临床环境是一项艰巨的努力。尽管众所周知,n-末端截短和焦谷氨酸 - 二聚体 - abeta(AβPE3)肽大量存在于AD患者的大脑中,但形成稳定且可溶性的低分子体重寡聚体,并在AD小鼠模型中诱导Neurodegeneration,但其潜在的药物目标并未被接受。这种情况发生了巨大变化,报告称,在II期试验中,在一组轻度AD的一组中,用AβPE3型抗体Donanemab(一种AβPE3PE3抗体)清除了Aymloid斑块和稳定的认知定义。本综述总结了有关βPE生成的分子机制,其生化特性以及干预点作为AD中的药物靶标的当前知识。
精神病患者经常表现出明显的认知缺陷,极大地影响了他们的生活质量,而这些缺陷决定了长期结局,而不是积极症状(即幻觉和妄想)(Kahn and Keefe,2013; McCleery和Nuechterlein,2019年)。这些认知缺陷通常在疾病的急性阶段和药理学治疗后的精神病发作并持续存在之前(McCleery和Nuechterlein,2019; Reichenberg等,2010; Woodberry等,2008)。然而,目前对精神疾病认知缺陷的潜在病理生理学的理解很少。谷氨酸能功能障碍参与了症状症状的发展和过程,包括认知缺陷(Bojesen等,2020,2021; Egerton等,2018; Howes等,2015; Howes等,2015; 2015; Merritt et al。了解这些认知缺陷(Bojesen等,2020,2021; Bustillo等,2011; Egerton等,2018; Howes等,2015; Howes等,2015; Merritt等,2013; Theberge等,2002; Wenneberg et; Wenneberg等,2020)。直接评估体内谷氨酸水平的主要技术是质子磁共振光谱(1 H-MRS)(Wijtenburg等,2015)。大多数1 H-MRS研究都集中在额叶或内侧皮质区域(Marsman等,2013;
摘要:多聚谷氨酰胺 (polyQ) 疾病,包括亨廷顿氏病,是一组由 CAG 重复扩增引起的晚发型进行性神经系统疾病。尽管最近有许多研究调查了 polyQ 疾病的病理特征和发展,但仍有许多问题尚未得到解答。新基因编辑技术的进步,尤其是 CRISPR-Cas9 技术,对于生成相关的 polyQ 模型具有不可否认的价值,这为研究过程提供了实质性支持。在这里,我们回顾了如何使用这些工具来纠正致病突变或创建具有不同 CAG 重复数的同源细胞系。我们描述了各种细胞模型,例如 HEK 293 细胞、患者来源的成纤维细胞、人类胚胎干细胞 (hESC)、诱导性多能干细胞 (iPSC) 和使用基因组编辑技术生成的动物模型。
谷氨酸是一种主要的神经递质,被所有脊椎动物和无脊椎动物的神经系统广泛使用。它主要是一种兴奋性神经递质,与神经系统发育以及从神经元之间简单的信息传递到神经系统功能的更复杂方面(包括突触可塑性、学习和记忆)的无数大脑功能有关。因此,识别谷氨酸能神经元及其谷氨酸释放位点对于理解神经回路功能的机制以及信息如何处理以产生行为至关重要。在这里,我们描述和表征了 smFLAG-vGlut,这是果蝇模型系统的谷氨酸能突触囊泡的条件标记。smFLAG-vGlut 已通过谷氨酸能神经元和突触囊泡的功能性、条件表达和特异性验证。 smFLAG-vGlut 的实用性通过对 26 种不同的中枢复合神经元类型进行谷氨酸能神经递质表型分析得到证实,其中 9 种被确定为谷氨酸能神经元。这种对谷氨酸神经递质使用的阐释将增强中枢复合神经回路的建模,从而增强我们对果蝇大脑这一区域信息处理的理解。使用 smFLAG 进行谷氨酸能神经递质表型分析和谷氨酸释放位点识别可以扩展到由二进制转录系统驱动程序表示的任何果蝇神经元。
机器人系统辅助基因组编辑技术和计算机辅助设计工具的进步极大地促进了微生物细胞工厂的发展。尽管目前已有多种独立的软件解决方案可用于载体DNA组装、基因组编辑和验证,但迄今为止仍然缺乏可以为整个基因组改造过程提供一站式服务的完整工具。这使得大量基因改造的设计,特别是构建那些需要严格精确的基因操作的突变,成为一个费力、耗时且容易出错的过程。在此,我们开发了一个称为GEDpm-cg的免费在线工具,用于设计谷氨酸棒杆菌的基因组点突变。选用自杀质粒介导的反选择点突变编辑方法和基于重叠的DNA组装方法来确保谷氨酸棒杆菌染色体上任何位置上的任何单核苷酸的可编辑性。设计结果提供了用于遗传修饰载体 DNA 组装和测序验证所需的引物,以满足所有实验需求。超过 10,000 个单点突变的计算机设计任务可以在 5 分钟内完成。最后,在 GEDpm-cg 的指导下,在谷氨酸棒杆菌中成功构建了三个独立的点突变,这证实了计算机设计结果可以准确无缝地与体内或体外实验衔接。我们相信该平台将提供一个用户友好、功能强大且灵活的工具,用于通过机器人/软件辅助系统对工业主力谷氨酸棒杆菌进行大规模突变分析。
摘要:多聚谷氨酰胺脊髓小脑共济失调 (SCA) 是由单个基因编码区胞嘧啶-腺嘌呤-鸟嘌呤重复扩增引起的六种常染色体显性共济失调的异质性群体。目前,这些疾病尚无治愈或减缓疾病的治疗方法,但它们的单基因遗传为基因治疗策略的发展提供了理论依据。事实上,RNA 干扰策略已在 SCA1、SCA3、SCA6 和 SCA7 的细胞和/或动物模型中显示出有希望的发现。此外,反义寡核苷酸疗法已在 SCA1、SCA2、SCA3 和 SCA7 模型中提供了令人鼓舞的概念证明,但它们尚未进入临床试验。相反,基因编辑策略,例如成簇的规律间隔的短回文重复序列 (CRISPR/Cas9),已被引入
通信:Nathan E Lewis,nlewisres@ucsd.edu。作者声明Karen Julie La Cour Karottki:正式分析,调查,可视化,写作 - 原始草稿,写作 - 评论和编辑; Hooman Hefzi:正式分析,调查,可视化,写作 - 原始草稿,写作 - 评论和编辑; Songyuan Li:调查,写作 - 评论和编辑; Lasse Ebdrup Pedersen:正式分析,监督,写作 - 原始草稿,写作 - 评论和编辑; Philipp N. Spahn:资源,软件; Chintan Joshi:正式分析,写作 - 原始草稿; David Ruckerbauer:资源,写作 - 评论和编辑; Juan A. Hernandez Bort:资源,写作 - 评论和编辑;亚历克斯·托马斯(Alex Thomas):数据策划; Jae Seong Lee:调查,监督,写作 - 原始草稿,写作 - 评论和编辑;妮可·博斯(Nicole Borth):资源,写作 - 评论和编辑; Gyun Min Lee:监督,写作 - 评论和编辑; Helene Faustrup Kildegaard:概念化,项目管理,资金获取,监督,写作 - 评论和编辑;内森·刘易斯(Nathan E.