肌营养不良症 (MD) 是一组罕见的遗传性疾病,会导致骨骼肌逐渐无力,并出现营养不良病理表型。它们分为九种主要类型:肌强直、杜兴氏、贝克尔、肢带、面肩肱型、先天性、眼咽型、远端型和埃默里-德雷富斯型 (Mercuri 等人,2019)。其中,成年人最常见的形式是肌强直性营养不良症 (DM),每 3000 人中就有 1 人受到影响,是由 DMPK(DM1:# 160900)或 CNBP(DM2:# 602668)基因座突变引起的(Mateos-Aierdi 等人,2015)。另一方面,儿童期最常见、最严重的遗传性营养不良症是杜氏肌营养不良症 (DMD,ONIM:#310200),每 5000 名新生男婴中就有 1 名患有此病 (Mendell 等人,2012 年),其原因是肌营养不良蛋白基因突变导致蛋白质完全缺失 (Ervasti & Sonnemann,2008 年;Hoffman 等人,1987 年)。总体而言,MD 涉及 40 多个基因的突变,这些基因导致不同的发病分子机制(详见 (Mercuri et al., 2019))。除了 MD 之外,在其他病理生理情况下也会观察到肌肉功能缺陷,例如大面积创伤、癌症或肌肉废用导致的萎缩(即身体固定后)(Sartori et al., 2021),或与年龄相关的肌肉质量损失、肌肉减少症(Muñoz-C anoves et al., 2020),这给不同的国家卫生系统带来了沉重的负担。因此,旨在改善生理和病理情况下的肌肉功能的策略和干预措施仍然是科学和医学界面临的关键挑战。在这种背景下,纳米医学提供了大量前所未有的工具,可以彻底改变我们看待骨骼肌疾病再生医学的方式。一方面,组织再生纳米医学利用纳米尺度材料作为药物输送系统 (DDS),利用细胞水平的内源性运输在纳米长度尺度上主动驱动这一事实 (Pozzi et al., 2014)。纳米粒子 (NPs) 的高表面体积比有利于生长因子 (Z. Wang, Wang, et al., 2017)、寡核苷酸 (Roberts et al., 2020)、细胞因子 (Raimondo & Mooney, 2018) 和其他生物活性剂的负载,以促进组织再生,而丰富的表面化学性质允许用靶向配体修饰 NPs,以确保更精确的输送。通过保护其有效载荷免于降解,NPs 可提高其药代动力学和生物利用度 (Fathi-Achachelouei et al., 2019)。就材料组成而言,有机纳米颗粒(即脂质体、聚合物、固体脂质纳米颗粒)具有悠久而成功的临床应用历史,可以保证良好的生物相容性和生物降解性(Colapicchioni,2020 年)。而无机纳米颗粒(即金属、氧化物、碳基、二氧化硅等)则表现出更高的化学稳定性,更容易合成和功能化,并且对内部(pH、温度、氧化还原电位)和外部(光、超声波和磁场)刺激具有良好的响应性(Mclaughlin 等人,2016 年)。此外,这些 NP 的独特光学特性(荧光、等离子体吸光度等)允许它们作为成像剂使用,因为它们允许在纳米图案支架或 DDS 内进行卓越的时空控制。然而,尽管具有这些吸引人的特性,无机 NP 在临床转化方面还不够成熟,而且它们的潜在毒性是一个值得关注的重要问题(Yang 等人,2019 年)。纳米医学彻底改变了骨骼肌再生的第二个领域是生物工程方法。骨骼肌再生研究的很大一部分集中在合成仿生支架以供细胞附着和生长以维持组织重建。纳米级材料的主要优势之一是可以优化这些支架的物理和生物特性,从而实现高度定制的平台。不同的纳米材料被用于优化支架的物理特性(即机械强度、电导性)并提供可控的生物活性剂释放。在这种情况下,纳米纤维支架通过改善系统架构提供拓扑支持以引导肌纤维分化和排列。另一方面,导电支架利用骨骼肌组织的内在兴奋性来调节肌肉细胞的存活、增殖和分化特性(Langridge 等人,2021 年)。本综述概述了纳米材料在肌肉疾病中的应用,重点介绍它们在组织工程方法和作为 DDS 的应用,并探索某些无机 NP 作为免疫调节剂的内在潜力(图 1)。本研究还将讨论该领域的未来前景以及限制这些纳米系统从实验室到临床的有效转化的困难。骨骼肌再生研究的很大一部分集中在合成仿生支架上,用于细胞附着和生长以维持组织重建。纳米级材料的主要优势之一是可以优化这些支架的物理和生物特性,从而实现高度定制的平台。不同的纳米材料被用来优化支架的物理特性(即机械强度、电导性)并提供受控的生物活性剂释放。在这种情况下,纳米纤维支架通过改善系统架构提供拓扑支持以引导肌纤维分化和排列。另一方面,导电支架利用骨骼肌组织的内在兴奋性来调节肌细胞的存活、增殖和分化特性(Langridge 等人,2021 年)。本综述概述了纳米材料在肌肉疾病中的应用,重点介绍了它们在组织工程方法和 DDS 中的应用,并探索了一些无机 NP 作为免疫调节剂的内在潜力(图 1)。本研究还将讨论该领域的未来前景以及限制这些纳米系统从实验室到临床的有效转化的困难。骨骼肌再生研究的很大一部分集中在合成仿生支架上,用于细胞附着和生长以维持组织重建。纳米级材料的主要优势之一是可以优化这些支架的物理和生物特性,从而实现高度定制的平台。不同的纳米材料被用来优化支架的物理特性(即机械强度、电导性)并提供受控的生物活性剂释放。在这种情况下,纳米纤维支架通过改善系统架构提供拓扑支持以引导肌纤维分化和排列。另一方面,导电支架利用骨骼肌组织的内在兴奋性来调节肌细胞的存活、增殖和分化特性(Langridge 等人,2021 年)。本综述概述了纳米材料在肌肉疾病中的应用,重点介绍了它们在组织工程方法和 DDS 中的应用,并探索了一些无机 NP 作为免疫调节剂的内在潜力(图 1)。本研究还将讨论该领域的未来前景以及限制这些纳米系统从实验室到临床的有效转化的困难。
Krabbe病(KD)是由GALC基因突变引起的溶酶体储存疾病(LSD)。有50多种单遗传LSD,在很大程度上阻碍了儿童的正常发育,并且经常导致过早死亡。目前尚无LSD的治疗方法,可用的治疗通常不足,表演短,并且并非没有合并症或长期副作用。过去30年中,我们对LSD病理学以及治疗方案的理解取得了重大进步。最近根据这些进展开始了两项基于基因治疗的临床试验,NCT04693598和NCT04771416。本评论将讨论我们对KD的了解如何到达今天的位置,重点关注临床研究,以及发现的内容如何证明对其他LSD的治疗有益。