治疗;诊断;症状;遗传学。1. 引言杜氏肌营养不良症 (DMD) 是一种 X 连锁隐性疾病,由编码肌营养不良蛋白的 DMD 基因突变引起。DMD 的病理特征是细胞骨架蛋白的完全缺失 [1]。DMD 的临床特征是进行性肌无力,肌肉脆性主要分布在近端肢体、颈部和胸部 [2]。DMD 是最常见的肌营养不良症,也是最常见的致命神经肌肉疾病之一,每 3,500 名新生男婴中就有 1 名患有此病 [3]。临床表现始于儿童早期,伴有进行性肌肉萎缩和无力,最终导致死亡。蛋白质缺陷在出生时就存在,但通常直到出生后第二年或第三年才会在临床上观察到并诊断出来。这种疾病最终导致患者在 12 岁左右无法行走,需要使用轮椅,肌肉无力导致严重的脊柱侧弯,并最终在 25 岁左右因心脏和/或呼吸衰竭而死亡,尤其是那些不选择呼吸机支持的患者 [2]。人类 DMD 基因位于 Xp21.2 位点,主要在骨骼肌中产生杆状细胞质结构蛋白,在心肌、平滑肌、脑神经细胞和视网膜中存在同工型 [4–6]。人类的 DMD 基因为 2.3 Mb,有 79 个外显子,产生 14 kb RNA 和 427 kDa 蛋白质 [5,7,8]。三分之一的 DMD 病例是由新生突变引起的,三分之二的病例有家族史,通常是女性携带者 [9]。贝克尔肌营养不良症 (BMD) 是一种不太严重的肌营养不良症,症状与 BMD 相似,但进展较慢且不太严重 [10]。统计分析发现,DMD 的全球患病率是 BMD 的三倍 [11]。全球 DMD 患病率约为每 100,000 名男性中有 7.1 人,而普通人群中每 100,000 人中有 2.8 人。DMD 的发病率为每 100,000 人中有 19.8 人
DESPLANQUES F. 和 FUCHS A.,(文本收集者),其他地方的著作,其他著作(非洲、印度、安的列斯群岛)。 CHAULET -ACHOUR C.,(与 Rezzoug)、Jamel-Eddine Bencheikh 合作。 DEVÉSA J.-M.(指导),刚果的魔术和写作。 TOSO-RODINIS G.,Rachid Boudjedra 作品中的爱神的盛宴和失败。 NGAL G.,《非洲文学的创造与断裂》。贝克尔! T.、突尼斯和马格里布文学,以及对诗歌和文学的思考和评论。 KADIMA-NZUnM.,(协调人),Jean Malanga 刚果作家(1907-1985) J. SCHUERKENS U.,非洲文学中的殖民化(试图重建社会现实) J. PAGEAUX D.,文字的翅膀,1994 年。 BENARAB A.,流亡的声音。 BARDOLPH J.,非洲的文学创作和疾病,1994 年。 BOUTET de MONGI M.,孤立的 Boudjedra,1994 年。 NGANDU NAKASHAMA P.,文学书籍,1995 年。 GOUNONGBÉ A.,自己的画布,1995 年。 BOURKIS R.,Tahar Ben Jelloun,金粉和戴着面具的脸,1995 年。 BARGENDA A.,Anna de Noailles 的诗歌,1995 年。 LAURE1TE P. 和RUPRECHT H.-G. (编辑),《诗学与想象。美洲文学法语复调学》,1995 年。KAZI -TANIN .-A.,《书面与口头交汇处的法语非洲小说》(黑非洲和马格里布),1995 年。BELLO Mohaman,《Pius Ngandu Nkashama 的血契中的异化》,1995 年。JUKPORBen K'Anene,《西非戏剧中的讽刺研究》,1995 年。BLACHERE JC.,《安德烈布勒东的图腾》。超现实主义和文学原始主义,1996 年。CHARD-HUTCHINSON M.,《辛西娅·奥齐克短篇小说透视》,1996 年。ELBAZ Ro,《塔哈尔·本·杰隆或叙事欲望的未实现》,1996 年。GAFAITI Hafid,《阿尔及利亚小说中的女性》,1996 年。CAZENA VE Odile,《反叛女性:女性创作的新非洲小说的诞生》,1996 年 CURATOLO Bruno(文本收集),《密涅瓦之歌》,作家及其哲学读物,1996 年。CHIKHI Beida,《文本中的马格里布》。著作、历史、知识和象征。1996 年。
抽象的心脏障碍在肌营养不良症中是经典的,其管理依赖于医疗药物。机械通气用于治疗呼吸衰竭,但会影响心脏功能。我们旨在研究杜钦(DMD)患者(DMD)和贝克尔(BMD)肌肉营养不良的患者心脏功能的自然史(HMV)。我们审查了在我们机构中遵循的DMD和BMD患者的图表,以在基线时在HMV启动和超声心动图数据上获得通风设置,并结束后跟进,以及发作心脏事件和胸腔机械并发症。我们分析了心脏事件的累积发生率以及超声心动图参数的演变及其与通风设置的关联。我们包括111例患者(101例DMD和10 BMD)。中位年龄为21岁[18-26],肺中值生命力(VC)的预测[10-24] 15%。所有患者均使用HMV,使用气管切开术进行了46%的通风。After a median follow up of 6.3 years, we found a slight decrease of the left ventricular ejection fraction (LVEF) (45% at end follow up vs 50% at baseline P = .019) and a stabilization of the LV end diastolic diameter indexed (LVEDD indexed 29.4mm/m 2 vs 30.7mm/m 2 at end follow up, P = .17).潮汐体积(VT)水平与LVEF下降的年率成反比(r = 0.29,p = .025)。左心房(LA)直径随机械通气(24mm vs 20mm,p = .039)降低,我们发现收缩期肺压的降低(35mm Hg vs 25mm Hg,P = .011)。心脏事件的累积发生率为12.6%。气胸发生在4%的患者中。继发于气管插件的低氧逮捕发生在4%的侵入性通气患者中。HMV无害,降低肺部压力,除了心脏保护药物外,还可以保护心脏的心脏。在HMV上DMD和BMD的患者中,心脏事件的累积发生率仍然适中,气胸发生率很少。
RE:HF9,2025年2月9日,Swedzinski主席和众议院能源,金融和政策委员会成员,DFL环境核心小组自2015年以来一直是DFL的社区核心小组。我们的使命是教育和动员明尼苏达州的公民解决气候危机,并保护,保存和恢复自然环境。我们写了反对HF 9的文章,我们认为这将不利于我们国家成功过渡到碳自由能的努力。HF 9急剧削弱了明尼苏达州的2040年100%无碳法律。第2节中的规定使电力公司无法通过提高费率反复遵守标准再遵守该标准的需求变得太容易了。公共公用事业委员会已经能够根据Minn Stat下延迟实施。216b.1691 subd。2b。简单地说,我们没有另外3,6年或更长时间来减少排放以防止最严重的气候影响。我们有达到2040年100%无碳目标的技术。缺少的只是政治意愿。HR9提高了长期以来对新的核电的暂停。明尼苏达州不需要我们也不可能负担新的核电站。我们具有丰富的风能和太阳能电位,当与智能电网,高效率传输线和存储空间合作时,可提供较低的成本能量。其他州的核项目已被证明花费的时间太长,无法以太阳能和风能高得多的成本允许和建造。HR9防止未使用的退休发电厂被拆除。我们没有生产核反应堆所需的燃料,也没有在数十万年前安全地存储废物的地方。这阻碍了利用土地清洁可再生能源的巨大机会。考虑明尼苏达州贝克尔的退休舍科工厂的现场发生了什么。该地点正在建设的大型太阳能项目预计将为他们的经济贡献约2.4亿美元。此外,这些基于化石燃料的发电厂经常被放置在不成比例地应对这些行动附近生活的影响的地区。居民应该看到这些地点是净化和重新利用的,以实现有益用途。HR9有利于昂贵的,效率低下的碳捕获和固存。不需要将这种做法作为优先方法,实际上可能与其他将为明尼苏达州带来好处的解决方案使用。减少昂贵的化石燃料的使用是我们环境和健康的双赢。真诚的,DFLEC执行委员会dflenvironmentalcaucus@gmail.com dflenvironment.org
3月11日,白宫向国会发布了政府的2025财年总统预算请求(PBR)。1.629万亿美元的基本请求包括8.95亿美元的可酌情国防支出和7340亿美元的非国防酌处支出。APLU拨款优先级图表详细信息详细详细介绍了2023财年和FY2024(如果有)拨款水平,以及政府的2025财年预算请求水平。政府可能会在整个星期内继续发布其他代理预算详细信息。随着其他详细信息可用,分析将被更新。由于国会在政府完成预算之前尚未敲定2024财年的资金,因此将预算的资金水平与最终的2023财年水平进行了比较。在可能的情况下,APLU将预算中的水平与迄今为止六项颁布的拨款账单的颁布水平进行比较。总统的预算要求在很大程度上遵守《财政责任法》中概述的资金水平,该法案要求超过2024财年的非国防酌处资金增长1%,在2025财年的最高水平和1.6万亿美元。PBR还包括大量提议的新强制性支出。由于这些限制,预算不允许许多APLU优先帐户持续增长。预算提出了跨APLU优先研究帐户的各种资金。美国农业部(USDA)内部的优先事项因计划而异。本文档代表了对APLU机构特别感兴趣的各种机构的请求的分析。作为例子,PBR提议为国家科学基金会提议102亿美元,比2024财年增长13%;部门能源办公室为86亿美元,将5%提高到2024财年;国立卫生研究院的483亿美元,比2023财年增长了2%。在高等教育方面,PBR建议将最高PELL赠款提高750美元,其中包括所有机构的可支配资金增加100美元和650美元的强制性资金,而营利性大学将无法获得。PBR要求为联邦学生援助办公室支付27亿美元,比2023财年增长了6.25亿美元,以支持贷款借款人,现代化数字基础设施并继续实施《 FAFSA简化法》。发布预算请求后,APLU总裁马克·贝克尔(Mark Becker)发表了一份声明,感谢政府提出的提议增加了佩尔奖,但指出预算在充分支持科学和研究的情况下不足。以下是部门/代理机构从预算请求中收集的有关字母顺序中关注计划的信息。
姓名 薪酬 费用 总计 Abbasi, Reza 116,401.20 - 116,401.20 Abid, Shahima 116,401.20 - 116,401.20 Aboofazeli, Mohammad 118,400.24 857.34 119,257.58 Addison-Jones, Brenda 117,263.60 360.03 117,623.63 Affolder, Jennifer 115,117.78 2,360.24 117,478.02 Akhtary, Shahram 87,573.00 236.25 87,809.25 Alcock, Kimberley 115,745.00 2,616.76 118,361.76 弗洛里卡·亚历山德鲁 117,071.46 4,921.50 121,992.96 克雷格·阿尔弗雷德森 109,442.04 13,190.06 122,632.10 马哈茂德·胡迈米迪 117,343.52 - 117,343.52 丽莎·艾伦 78,072.09 - 78,072.09 肯·安德森 116,557.20 - 116,557.20 威廉·安吉尔贝克 118,306.53 7,343.81 125,650.34 奥比·阿尼塞夫 124,299.97 199.05 124,499.02 Arasanipalai Kandhadai, Padmapriya 119,525.20 - 119,525.20 Arding, Alicia 116,401.20 157.50 116,558.70 Ariafar, Arezoo 123,939.07 - 123,939.07 Arndt, Jacqueline 115,699.77 62.91 115,762.68 阿德里安娜·阿罗亚夫 95,227.72 - 95,227.72 珍妮特·阿什 116,401.20 3,110.00 119,511.20 西沃恩·阿什 116,401.20 572.50 116,973.70 莱维阿吞117,639.29 - 117,639.29 阿曼霍特阿特瓦尔 116,931.98 1,579.92 118,511.90 桑迪普阿特瓦尔 113,167.09 - 113,167.09 卡林奥德特 116,401.20 - 116,401.20 伊丽莎白·巴钦斯基 116,024.01 4,039.82 120,063.83 戴维·巴赫拉 116,401.20 137.86 116,539.06 谢拉·巴达尼奇 116,401.20 - 116,401.20 巴德,苏赫温德尔 116,401.20 - 116,401.20 阿曼贝恩斯 118,188.07 - 118,188.07 达吉特贝恩斯 87,435.00 - 87,435.00 黎明贝恩斯 112,095.50 - 112,095.50 安尼什巴尼亚 116,401.20 2,100.00 118,501.20 詹妮弗·巴克 117,476.00 62.80 117,538.80 杰奎琳·巴雷罗 105,082.86 198.68 105,281.54 巴里·巴林顿 116,953.20 - 116,953.20 詹姆斯·巴顿 116,065.92 2,013.50 118,079.42 巴希尔,梅赫维什 126,206.09 - 126,206.09 贝茨,罗伯特 116,654.32 - 116,654.32 巴特拉,库什布 78,355.39 3,748.88 82,104.27 贝克尔,劳伦斯 116,474.89 1,057.34 117,532.23 贝克威斯,劳里 117,336.88 - 117,336.88 比奇,道格拉斯 117,540.78 - 117,540.78 贝宁格,卡林 109,904.22 2,386.87 112,291.09朗达·本克 118,680.37 217.80 118,898.17 马丁·贝雷扎加 95,701.77 - 95,701.77 特鲁迪·布特尔 81,320.41 163.98 81,484.39 尼基尔·巴德瓦吉 116,401.20 - 116,401.20
∗ Burlig:芝加哥大学和NBER的哈里斯公共政策与能源政策研究所(EPIC)。电子邮件:burlig@uchicago.edu。Jina:哈里斯公共政策和史诗学院,芝加哥大学和NBER。 电子邮件:amirjina@uchicago.edu。 凯利:芝加哥大学哈里斯公共政策学院。 电子邮件:erinmkelley@ uchicago.edu。 巷:芝加哥大学和NBER的哈里斯公共政策学院。 电子邮件:laneg@uchicago.edu。 sahai:芝加哥大学的肯尼斯·C·格里克(Kenneth C. Gri)经济系。 电子邮件:harshil@uchicago.edu。 我们感谢Vittorio Bassi,Susanna Berkouwer,Chris Blattman,Josh Dean,Kyle Emerick,Kyle Emerick,Xavier Gine,Rachel Glennerster,Rachel Glennerster,Michael Greenster,Faraz Hayat,Koichiro Robertson, Mark Rosenzweig, Elena Surovyatkina, Catherine Wolfram, Brian Wright, and seminar participants at the Coase Project, the Paris School of Economics, London School of Economics, EPIC Junior Workshop, Northwestern University, the UChicago Mini-Conference on Weather Advisory Services, the Yale Climate, Environment, and Economic Growth Conference, Y-RISE, and NBER Development for helpful comments and suggestions. 我们感谢Manzoor Dar的出色领域支持,Ramya Teeparthi的宝贵项目管理以及Anjani Balu,Alina Gafanova,Sam Hsu,Meghna Singh,Prachi Shukla,Rathan Sudheer,Rathan Sudheer,尤其是Amrita Pal,尤其是Amrita Pal。 这项研究已获得芝加哥大学的IRB批准(协议号 AEARCTR-0008846)。Jina:哈里斯公共政策和史诗学院,芝加哥大学和NBER。电子邮件:amirjina@uchicago.edu。凯利:芝加哥大学哈里斯公共政策学院。电子邮件:erinmkelley@ uchicago.edu。巷:芝加哥大学和NBER的哈里斯公共政策学院。电子邮件:laneg@uchicago.edu。sahai:芝加哥大学的肯尼斯·C·格里克(Kenneth C. Gri)经济系。电子邮件:harshil@uchicago.edu。我们感谢Vittorio Bassi,Susanna Berkouwer,Chris Blattman,Josh Dean,Kyle Emerick,Kyle Emerick,Xavier Gine,Rachel Glennerster,Rachel Glennerster,Michael Greenster,Faraz Hayat,Koichiro Robertson, Mark Rosenzweig, Elena Surovyatkina, Catherine Wolfram, Brian Wright, and seminar participants at the Coase Project, the Paris School of Economics, London School of Economics, EPIC Junior Workshop, Northwestern University, the UChicago Mini-Conference on Weather Advisory Services, the Yale Climate, Environment, and Economic Growth Conference, Y-RISE, and NBER Development for helpful comments and suggestions.我们感谢Manzoor Dar的出色领域支持,Ramya Teeparthi的宝贵项目管理以及Anjani Balu,Alina Gafanova,Sam Hsu,Meghna Singh,Prachi Shukla,Rathan Sudheer,Rathan Sudheer,尤其是Amrita Pal,尤其是Amrita Pal。这项研究已获得芝加哥大学的IRB批准(协议号AEARCTR-0008846)。我们感谢芝加哥大学的贝克尔·弗里德曼经济学研究所,J-Pal的农业技术采用计划和国王气候行动计划,以及世界银行慷慨地为该项目提供资金。irb20-1364),并在AEA RCT注册中注册(标识号所有剩余的错误都是我们自己的。
演讲者简介 Michael Cary 是杜克大学护理学院 Elizabeth C. Clipp 护理系主任,并于 2022 年 1 月被任命为首任 AI 健康公平学者。他的工作利用复杂的生物医学和医疗保健数据集以及创新的数据科学方法来识别导致老年人(主要是老年非裔美国人)功能衰退和再入院的风险因素,他们面临残疾风险。 2021 年 2 月,Cary 博士的工作得到了正式认可,他被提名为 Samuel DuBois Cook 协会颁发的 Raymond Gavins 杰出教师奖的获得者,该奖项旨在表彰、庆祝和肯定杜克大学非裔美国学生、教师和工作人员的存在。 Anuj Gangopadhyaya 是城市研究所卫生政策中心的高级研究员。他的研究重点是安全网计划对低收入家庭儿童的健康和福祉、家庭收入和教育成就结果的影响。他主要研究医疗补助资格扩大对儿童教育成就的影响、劳动所得税抵免计划对孕产妇和儿童健康的影响以及平价医疗法案医疗补助扩大对成年劳动力供应和育龄妇女生育率的影响。他还帮助领导 Urban 的 Medicare 模拟模型 (MCARE-SIM),估计拟议的政策变化对计划支出、受益人支出和服务使用的潜在影响。Gangopadhyaya 在伊利诺伊大学芝加哥分校获得经济学博士学位。Maia Hightower 博士,医学博士、公共卫生硕士、工商管理硕士是 Equality AI 的首席执行官兼创始人,曾任芝加哥大学医学院执行副总裁兼首席数字化转型官。Hightower 博士是医疗保健和数字化转型交叉领域的领军人物。凭借其深厚的专业知识和战略领导力,她站在争取道德 AI 和反对算法偏见的斗争的最前线,确保医疗保健的数字化未来是公平和公正的。 Hightower 博士是负责任 AI 领域备受追捧的全国性演讲者,她深入研究了数字技术、健康公平、多样性和包容性等细微差别。她主张医疗保健数字化转型的价值必须对所有利益相关者公平,尤其是最脆弱的利益相关者。她的使命核心是 Equality AI,这是一家早期投资者支持的医疗技术初创公司。在数据科学家已成为护理团队不可或缺的一部分的世界中,Equality AI 解决方案使数字化护理团队能够实现健康公平目标。这家初创公司专注于负责任的 AI 工具和策略,以开发公平且无偏见的算法。Hightower 博士的愿景很明确:建立一种包容和公平的医疗 IT 文化。她开发了医疗 IT 公平成熟度模型 (HITEM),以消除医疗 IT 中固有的偏见。她被《健康数据管理》评为“医疗 IT 领域最具影响力的女性”之一,并被《贝克尔医院评论》评为该领域的关键影响者。拥有超过 15 年的高管经验,Hightower 博士已经驾驭了学术医疗中心、临床整合网络和负责任的护理组织中复杂的医疗 IT 问题。在担任芝加哥大学医学院执行副总裁兼首席数字化转型官期间,她带头制定数字 IT 战略和 IT 运营,通过技术创新推动患者护理的变革。此外,作为犹他大学健康中心前首席医疗信息官和健康公平、多样性和包容性高级总监,她将临床见解与战略 IT 计划相结合,利用数据和数据驱动的见解确保技术进步与健康公平和机构战略重点保持一致。 Hightower 博士在康奈尔大学获得学士学位,在罗彻斯特大学医学院获得医学博士学位和公共卫生硕士学位,随后在加州大学圣地亚哥分校担任内科和儿科住院医师。她还拥有宾夕法尼亚大学沃顿商学院的工商管理硕士学位。
循环肿瘤DNA(CTDNA)敏感性仍然是膀胱癌患者分子残留疾病(MRD)检测的敏感性。为了解决这个问题,我们专注于最靠近该疾病,尿液和分析的尿液肿瘤DNA的生物流体。我们通过深层测序(UCAPP-SEQ)将超低通的整个基因组测序(ULP-WGS)与尿癌个性化的亲填充(ULP-WGS)整合在一起,以实现敏感的MRD检测并预测总体存活。变体等位基因频率,推断的肿瘤突变负担和无尿细胞DNA(CFDNA)的拷贝数衍生肿瘤分数水平的明显预测的病理完全反应状态,远胜于血浆CTDNA的能力。将这些尿液CFDNA衍生的因子具有带有一口输出的交叉验证的随机森林模型,对于预测有关金标准手术病理学的残留疾病的敏感性为87%。Kaplan - Meier分析该模型的患者具有MRD,这是通过COX回归分析证实的。对肌肉侵入性,新辅助化疗和持有验证亚组进行的其他生存分析证实了这些发现。总而言之,我们促进了来自74例局部膀胱癌患者的尿液样本,并使用尿液CFDNA多词敏感地检测MRD并准确预测生存率。
1. Fung, TS; Liu, DX, 人类冠状病毒:宿主-病原体相互作用。2019 年微生物学年鉴,73,529-557。2. 吴灿荣,YY,刘洋,张鹏,王雅莉,王琪琪,徐扬,李明雪,郑梦竹,陈丽霞,李华 弗林,COVID-19 的潜在治疗靶点。2020。3. Walls, AC; Park, YJ; Tortorici, MA; Wall, A.; McGuire, AT; Veesler, D., SARS-CoV-2 刺突糖蛋白的结构、功能和抗原性。Cell 2020。 4. https://covid19.who.int/?gclid=CjwKCAjw8df2BRA3EiwAvfZWaP34yJr8HdK4mBed5dKa2T6fl ZjBA5sFDNCata6LM6-eXa1CmMjHwhoCUZQQAvD_BwE 。 5. 达玛,K.;沙伦,K.;蒂瓦里,R.;达达尔,M.;马利克,YS;辛格,KP; Chaicumpa, W.,COVID-19,一种新出现的冠状病毒感染:设计和开发疫苗、免疫疗法和疗法的进展和前景。人类疫苗免疫疗法 2020,1-7。 6.张L.;林,D。孙,X.;柯斯,美国;德罗斯滕,C.;索尔赫林,L.;贝克尔,S.; Rox, K.; Hilgenfeld, R., SARS-CoV-2 主蛋白酶的晶体结构为设计改进的 α-酮酰胺抑制剂提供了基础。Science 2020, eabb3405。7. Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M., 羟氯喹是氯喹的一种低毒性衍生物,可在体外有效抑制 SARS-CoV-2 感染。Cell Discov 2020, 6, 16。8. Gao, J.; Tian, Z.; Yang, X., 突破:磷酸氯喹在临床研究中显示出对治疗 COVID-19 相关肺炎的明显疗效。Biosci Trends 2020, 14(1), 72-73。9. Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G., 瑞德西韦和氯喹在体外有效抑制最近出现的新型冠状病毒 (2019-nCoV)。Cell Res 2020, 30 (3), 269-271。10. Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D., 羟氯喹治疗严重急性呼吸道综合征冠状病毒 2 (SARS-CoV-2) 的体外抗病毒活性和优化剂量设计预测。Clin Infect Dis 2020。 11. Dong, L.;Hu, S.;Gao, J.,发现治疗 2019 年冠状病毒病 (COVID-19) 的药物。药物发现治疗学 2020, 14 (1), 58-60。12. https://khgmstokyonetimidb.saglik.gov.tr/TR,f.-.-m.-t.-.-.-c.-.-s.-c.-e.-t.-k.-i.-i.-bh,土耳其。13. Agostini, ML;Andres, EL;Sims, AC;Graham, RL;Sheahan, TP;Lu, X.;Smith, EC;Case, JB;Feng, JY;Jordan, R.;Ray, AS;Cihlar, T.;Siegel, D.;Mackman, RL;Clarke, MO;Baric, RS; Denison, MR,冠状病毒对抗病毒药物瑞德西韦 (GS-5734) 的敏感性由病毒聚合酶和校对核酸外切酶介导。mBio 2018, 9 (2)。14. Brown, AJ;Won, JJ;Graham, RL;Dinnon, KH,第 3 位;Sims, AC;Feng, JY;Cihlar, T.;Denison, MR;Baric, RS;Sheahan, TP,广谱抗病毒药物瑞德西韦可通过高度发散的 RNA 依赖性 RNA 聚合酶抑制人类地方性和人畜共患的德尔塔冠状病毒。抗病毒研究 2019,169,104541。15. Ko, WC;Rolain, JM;Lee, NY;Chen, PL;Huang, CT;Lee, PI;Hsueh, PR,支持使用瑞德西韦治疗 SARS-CoV-2 感染的论据。国际抗微生物剂杂志 2020,105933。16. Tim Smith, P.,BCPS;Jennifer Bushek,PharmD;Tony Prosser,PharmD,COVID-19 药物治疗——潜在选择。爱思唯尔 2020。17. Chu, CM;Cheng, VC;Hung, IF;Wong, MM;Chan, KH;Chan, KS;Kao, RY; Poon, LL; Wong, CL; Guan, Y.; Peiris, JS; Yuen, KY,洛匹那韦/利托那韦在 SARS 治疗中的作用:初步病毒学和临床发现。Thorax 2004, 59 (3), 252-6。18. Chen, F.; Chan, KH; Jiang, Y.; Kao, RY; Lu, HT; Fan, KW; Cheng, VC; Tsui, WH; Hung, IF; Lee, TS; Guan, Y.; Peiris, JS; Yuen, KY,10 种 SARS 冠状病毒临床分离株对选定的抗病毒化合物的体外敏感性。J Clin Virol 2004, 31 (1), 69-75。