本可行性研究重点关注使用包含热泵、热存储和控制装置的三菱 QAHV CO2 HPWH 成套系统进行负荷转移。本文讨论了控制策略、试点项目测试和 Ecosizer 分析结果。QAHV 使用内置设备控制装置和定制的三菱控制板来实现负荷转移所需的灵活性。试点项目将测试系统在早高峰和晚高峰期间减轻负荷、优化 COP 效率以及响应 CTA-2045 需求响应请求的能力。CTA-2045 是一个开放平台,定义了用于向电器发送公用设施信号的端口和机器对机器通信。本文还介绍了使用 CTA-2045 进行需求响应的重要性、QAHV 需求响应系统的设置方式以及它如何响应需求响应请求。最后,后端 Ecosizer 代码以参数方式运行,以研究配备一到两个热泵和热存储的 QAHV 系统如何支持拥有 50 多套公寓的多户建筑中的负荷转移。 Ecosizer 是由 Ecotope 开发的一款网络计算工具,用于确定热泵热水系统的尺寸。该练习发起了负载形状修改,以改进 Ecosizer 负载转移尺寸确定方法。使用 Ecosizer 估算负载转移量的工程师现在将获得一个不太保守的水箱容量,该水箱容量仍将持续提供负载转移,但会降低安装成本。
到 2023 年 6 月 1 日,委员会应与公共事业委员会和独立系统运营商协商,通过一项负荷转移目标,以降低净峰值电力需求,并在此后根据第 25302 条编制的每两年一次的综合能源政策报告中调整这一目标。在制定这一目标时,委员会应考虑 202 年劳伦斯伯克利国家实验室关于 2030 年转移资源的报告以及其他相关研究的结果。委员会应与公共事业委员会和独立系统运营商协商,建议增加需求响应和负荷转移的政策,这些政策不会增加温室气体排放或提高电价。根据此要求提出第一个负荷转移目标的工作人员报告于 2023 年 5 月发布。2023 年 5 月 31 日,CEC 审议了该报告和负荷转移目标以供采纳。
随着电力系统向更高比例的可变可再生能源转型,以及为实现减排目标而减少使用传统发电厂,对替代灵活平衡工具(如负荷转移)的需求不断增加。由于运输能力的局部限制和发电日益分散,表征此类灵活平衡资源的地理分布非常重要。这项工作的目的是使用 Kleinhans (2014) 先前开发的时间分辨负荷转移模型,以 NUTS-3 空间分辨率估计德国工业负荷转移潜力,并开放所有输入数据、方法、代码和结果。分析的重点是生产工业产品的电力密集型机器提供负荷转移的潜力(此处称为工业过程),因为它们目前可直接利用,而工业过程热作为次要主题进行研究,因为它主要由化石燃料提供,因此需要未来的开发才能利用。调查的四个主要研究问题是:(1)是否可以使用来自统计数据数据库或行业报告中的易于获取的数据来估算 NUTS-3 工业过程的年度能源需求,而不是像之前发表的几项研究 NUTS-3 工业负荷转移潜力的研究那样使用更难获得的工厂特定数据,(2)使用所选方法得到的负荷转移潜力结果与现有文献相比如何,(3)如何估算 NUTS-3 过程热负荷转移潜力,以及该潜力与工业过程相比如何,以及(4)到 2050 年工业过程的负荷转移潜力将如何发展。
摘要 — 在本文中,我们使用具有小时时间分辨率的发电扩展规划问题的公式,来研究不同灵活性来源的可用性对 2040 年碳中和的中欧电力系统(重点是瑞士)的影响。我们评估了灵活发电、负荷转移和进口对现有和新建机组的投资和运营的作用。我们的结果表明,将负荷转移作为优化的一部分可以减少对可再生能源和传统技术的投资需求。新建的灵活发电机(燃气轮机)和负荷转移的结合增加了模拟电力系统的灵活性,并导致整体系统成本最低。瑞士及其邻国之间跨境输电能力的减少对国内运营和投资产生了重大影响,但也可能影响周边国家。索引术语 — 跨境拥塞管理、灵活发电、发电扩展规划、负荷转移、可再生能源整合
农业用水抽水可能是电力需求的一个灵活组成部分。在本研究中,开发了一个涉及基于场景的随机规划模型的框架,以研究负荷转移对农业负荷可再生能源系统规模的影响。借助该框架,评估了替代负荷转移政策,以观察农业负荷的内在灵活性如何在设计可再生能源系统时减少投资。使用来自印度古吉拉特邦地区的真实数据,分别评估太阳能和风能的情况,以了解这些能源与农业需求之间的一致性。讨论了使用可调度源来帮助解决系统中可再生能源间歇性的价值。还表明,储能可以成为可再生能源整合的便捷控制机制;然而,对于农业负荷来说,这是一种昂贵的需求响应计划替代品。提出了可为替代负荷转移政策提供的激励金额的基准。© 2020 Elsevier Ltd. 保留所有权利。
6. 智能管理与微电网和国家能源网络的集成——除了智能控制之外,主动建筑还管理与更广泛的能源网络的交互,例如需求侧响应、负荷转移和预测控制方法。
应对可再生能源的间歇性是一项根本挑战,负荷转移和电网规模存储是关键的应对措施。我们提出了信息电池 (IB),其中能量以信息的形式存储——具体来说,是已完成的计算任务的结果。因此,信息电池通过推测负荷转移提供存储,预测未来将执行的计算。我们从分布式系统的角度出发,评估通过增强编译器工具链、键值存储和现代超大规模计算中的其他重要元素,IB 存储系统的实用程度。具体来说,我们通过增强 Rust 编译器来实现一个特定的 IB 原型,以实现透明的函数级预计算和缓存。我们评估了这带来的开销,以及宏观层面的作业预测和功率预测。我们还评估了 IB 系统的操作空间,以确定给定功率和计算机制下任何 IB 系统的最佳效率。
高效生产、分配和消耗能源是我们这个时代面临的最重要挑战之一。随着分布式发电 (DG) 在全球能源结构中的重要性日益增加,生产水平比以往任何时候都更难预测。为了避免损失或停电,必须找到新的解决方案:让需求适应生产,而不是相反,这种做法越来越受欢迎,可以提高电网的运行效率。赋予需求曲线所需形状的概念被称为需求侧管理 (DSM) [Kreith and Goswami,2016],它可以通过多种技术来实现。在这些技术中,负荷转移包括转移部分需求,方法是提前或推迟电力消耗 [Wang et al.,2016]。在本文中,负荷转移是唯一考虑的 DSM 技术。当然,应用 DSM 技术只能在智能电网环境中进行,在智能电网环境中,广泛的通信手段确保配电网络各个参与者之间的数据传输,特别是在能源供应商和消费者之间 [Farhangi,2010,Ka-balci,2016]。在 Alekseeva 等人 [2018] 的研究中,电力供应商的目标是最大化其利润,因为他们知道其客户将根据供应商提供的价格优化其消费。在 Afşar 等人 [2016] 的研究中也发现了类似的模式,其中供应商的目标在于 m
能源储存是实现欧盟到 2050 年实现气候中和目标的关键因素之一,即实现温室气体 (GHG) 净零排放经济。脱碳和向清洁能源的过渡,加上能源效率的提高,将给使用的能源系统带来重大变化。热能储存 (TES) 系统能够通过能源转换和储存提供电力负荷转移,有助于开发灵活的能源系统,管理可再生能源固有的间歇性。