图1:样本设计和2D层布置的概述。(a)LH-FET的设备示意图。l SLG描述了SLG/MOS 2异质结构的长度,并定义了晶体管的通道。(b)MOS 2转移之前SI/SIO 2上SLG的拉曼光谱。(c)LH-FET的光学显微镜图像。(d)中显示的拉曼区域扫描是在标记为红色盒子的区域进行的。(d)空间解析的拉曼图显示了SLG(左)2D模式的强度以及MOS 2(右)A 1G模式的强度。黑暗区域表示不存在模式,而更明亮的区域表示强度更强。
*通讯作者。1 Max Planck物质结构和动态研究所,德国汉堡。2物理系,哥伦比亚大学,美国纽约,美国。 3 rwth Aachen University和Duture Information Technology的Jara-Fundamentals,Aachen,Aachen,Div foreire der der der statistischen physik。 4日本杜斯库巴国家材料科学研究所电子和光学材料研究中心。 5日本杜斯库巴国家材料科学研究所材料纳米构造研究中心。 6计算量子物理中心,西蒙斯基金会基金研究所,美国纽约,美国。 7 Cnano-BiospectRoscopy Group,Dectionalmo de Fisica de Materiales,San Sebasti´an,San Sebasti´an大学。 8理论物理学研究所和不来梅计算材料科学中心,德国不来梅大学,德国不来梅大学。 9 Laboratoire de Lecole de L'Ecole Normale Sup´erieure,Universit´e PSL,CNRS,Sorbonne Universit´e,Paris-Cit´eo,Paris-cit´eo,Paris,Paris,France。 法国德国大学学院10大学。2物理系,哥伦比亚大学,美国纽约,美国。3 rwth Aachen University和Duture Information Technology的Jara-Fundamentals,Aachen,Aachen,Div foreire der der der statistischen physik。4日本杜斯库巴国家材料科学研究所电子和光学材料研究中心。5日本杜斯库巴国家材料科学研究所材料纳米构造研究中心。6计算量子物理中心,西蒙斯基金会基金研究所,美国纽约,美国。7 Cnano-BiospectRoscopy Group,Dectionalmo de Fisica de Materiales,San Sebasti´an,San Sebasti´an大学。8理论物理学研究所和不来梅计算材料科学中心,德国不来梅大学,德国不来梅大学。 9 Laboratoire de Lecole de L'Ecole Normale Sup´erieure,Universit´e PSL,CNRS,Sorbonne Universit´e,Paris-Cit´eo,Paris-cit´eo,Paris,Paris,France。 法国德国大学学院10大学。8理论物理学研究所和不来梅计算材料科学中心,德国不来梅大学,德国不来梅大学。9 Laboratoire de Lecole de L'Ecole Normale Sup´erieure,Universit´e PSL,CNRS,Sorbonne Universit´e,Paris-Cit´eo,Paris-cit´eo,Paris,Paris,France。法国德国大学学院10大学。
摘要:在汽车,航空航天和电子行业等行业中对轻质和耐用材料的需求不断增长,促使异性结构双层复合材料的发展,将金属的结构完整性与聚合物的多功能性结合在一起。本研究介绍了不锈钢(SUS)和聚酰胺66(PA66)之间的临界界面,重点是表面处理和各种硅烷偶联剂在增强异径sus/pa66双层复合材料的粘附强度方面的关键作用。通过系统的表面修饰(通过扫描电子显微镜,原子力显微镜和接触角分析显示),该研究评估了增加表面积,粗糙度和SUS能量的影响。X射线光电子光谱评估证实了特定硅烷偶联剂的战略选择。尽管某些偶联剂几乎没有影响力学,但值得注意的是,氨基丙基三氧基硅烷(A1S)和3-甘油同基氧甲基三甲氧基硅烷(ES)显着增强了杂气结的机械性能。这些进步归因于金属 - 聚合物界面处的界面相互作用。这项研究强调了靶向表面处理的重要性,以及明智的耦合剂在优化金属 - 聚合物复合材料的界面粘附和整体性能方面的明智选择,为材料的制造提供了有价值的见解,在减轻重量和增强耐用性的情况下,材料的制造是最重要的。
在本研究中,使用微电子和光子结构分析 (AMPS-1D) 模拟器检查并表征了异质结 (P + a-SiC/i 本征/n-Si) 太阳能电池。在这种异质结太阳能电池中,施加了本征层以提高效率和性能。使用该本征层,可以实现 36.52% (Voc = 1 714 V、Jsc = 27 006 mA/cm 2 和 FF = 0 789) 的最佳效率。还观察了没有本征层的太阳能电池。在这种情况下,观察到的最大效率为 2.378%,这非常差。还研究了具有电子阻挡层 (EBL) 和缺陷层的异质结太阳能电池。在这种情况下,模拟结果显示效率 (34.357%) 低于之前。本研究论文介绍了一种异质结太阳能电池的优化模型,该模型通过增加本征层来提高效率。所提出的设计在其理论框架中显示出巨大的潜力。展望未来,该设计可以在实验室环境中实现,并有可能扩大应用范围。
摘要:在这项研究中,通过在SI底物上的纳米结构NIO的直接自旋涂层制造了基于石墨烯/Nio/N-Si的自动宽带光电探测器。Nio/Si异质结构的Curren T – V Oltage测量表现出在光照明下具有增强的pho-drumerent的整流特性。在300 nm至800 nm的范围内测量了光反检测能力,并且由于NIO的宽带隙,观察到紫外线区域的较高光响应。顶部的石墨烯透明导电电极的存在进一步增强了整个测得的波长区域的响应性,从350至800 nm。,在插入石墨烯顶层时,发现NiO/Si检测器在350 nm处的光响应从0.0187增加到0.163 a/w。在零偏置处的高摄影电流比(≃104)表明该设备在节能高性能宽带光电检查器中具有有利的应用。
摘要:AI驱动技术的最新进展,尤其是在蛋白质结构预测中,正在显着重塑药物发现和发育的景观。本综述着眼于以下问题:这些技术突破是如何用Alphafold2示例的,正在彻底改变我们对蛋白质结构和功能发生变化的理解,并改善我们对抗它们的方法。通过提高确定药物靶标的精度和速度并可以设计和优化药物候选者,这些技术正在简化整个药物开发过程。我们探讨了alphafold2在癌症药物开发中的使用,审查其疗效,局限性和潜在的挑战。我们还将alphafold2与其他算法(如ESMFold)进行了比较,解释了该领域中采用的多种方法以及这些差异在应用特定算法中的实际效果。此外,我们讨论了这些技术的更广泛应用,包括蛋白质复合物结构的预测以及新型蛋白质的生成AI驱动设计。
1联合生物能源研究所,劳伦斯·伯克利国家实验室,加利福尼亚州埃默里维尔国家实验室,美国2生物系统与工程,劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利,美国伯克利,加利福尼亚大学,加利福尼亚大学,美国伯克利大学,美国伯克利大学,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,伯克利大学,美国,美国,美国,美国,美国,美国,美国,美国。 Berkeley, Berkeley, California, United States of America, 5 Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America, 6 Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America, 7 Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen,中华人民共和国,丹麦技术大学,丹麦技术大学新北北部生物可持续性基金会8
*通讯作者:新泽西州普林斯顿大学化学系Alessio Amaolo,美国,美国,美国,美国,电子邮件:alessioamaolo@princeton.edu。https://orcid.org/0000-0002-9973-6872 pengning Chao,马萨诸塞州剑桥,马萨诸塞州马萨诸塞州马萨诸塞州数学系,美国马萨诸塞州,美国马萨诸塞州02139https://orcid.org/0000-0001-9287-9515 Thomas J. Maldonado和Alejandro W. Rodriguez,普林斯顿大学电气和计算机工程系,普林斯顿大学,普林斯顿大学,NJ 08544,NJ 08544,美国,Maldonado@-mail:maldonado@-mail@maldonado@crinceton.ed.ed.ed.ed.ed.ed.ed.ed.ed.ed。 arod@princeton.edu(a.w.Rodriguez)。https://orcid.org/0009-0005-0465-193X(T.J. Maldonado)Sean Molesky,蒙特利尔PolytechniqueMontréal,QuébecH3T 1J4,加拿大蒙特利尔市Polytechnique h3T 1J4,加拿大蒙特利阿尔,蒙特利克尼,eanean.molesky@polymmtky.caca。 https://orcid.org/0000-0003-3575-5166https://orcid.org/0009-0005-0465-193X(T.J. Maldonado)Sean Molesky,蒙特利尔PolytechniqueMontréal,QuébecH3T 1J4,加拿大蒙特利尔市Polytechnique h3T 1J4,加拿大蒙特利阿尔,蒙特利克尼,eanean.molesky@polymmtky.caca。https://orcid.org/0000-0003-3575-5166