CRISPR/Cas9 系统前所未有地革新了基因组编辑技术,该技术已成功应用于几乎所有生物科学分支。尽管在基因操作方面取得了很大成功,但大多数方法仍然费力且需要整合,并且需要长时间来扩增突变细胞库/克隆,而表现出功能性敲除效率的细胞较少。为了克服这些障碍,我们在此描述了一种高效、廉价、无整合且快速的一步式方案,用于小鼠多能干细胞 (PSC) 中的 CRISPR/Cas9 辅助基因敲除。我们的方案简化了基于脂质体的转染系统和筛选策略,使其能够更有效地处理少量 PSC(~2.0 × 10 4 个细胞),并最大限度地减少慢病毒包装、转导和单克隆传代等繁琐的步骤。在我们的方法中,约 90%(CI = 95%,79.5230% – 100%)的 PSC 菌落具有蛋白质表达方面的功能性敲除。因此,目前的方案在技术上可行、省时且高效,可用于多能干细胞中的基因组编辑。
3D 偏振光成像 (3D-PLI) 方法测量组织学脑切片的双折射以确定神经纤维 (髓鞘轴突) 的空间走向。虽然可以高精度地确定平面内纤维方向,但计算平面外纤维倾角更具挑战性,因为它们是从双折射信号的幅度中得出的,而双折射信号的幅度取决于神经纤维的数量。提高精度的一种可能性是考虑平均透射光强度 (透射加权)。当前程序需要费力地手动调整参数和解剖知识。在这里,我们引入了一种自动化、优化的纤维倾角计算,从而可以更快、更可重复地确定 3D-PLI 中的纤维方向。根据髓鞘的程度,该算法使用不同的模型 (透射加权、不加权或线性组合),从而可以考虑区域特定行为。由于该算法是并行的和 GPU 优化的,因此可以应用于大型数据集。此外,它仅使用标准 3D-PLI 测量的图像(无倾斜),因此可以应用于以前测量的现有数据集。此功能已在黑长尾猴和大鼠脑的未染色冠状和矢状组织切片上得到验证。
引言月球的诱惑很强 - 人类再次应对挑战。一个有前途的近期场景是将一对流浪者降落在月球上,并参与多年1000公里的历史景点,包括阿波罗11号,测量师5,游侠8,阿波罗17和Lunokhod 2 [6]。在这种情况下,流浪者将以自主或保护的监督控制模式进行操作,并将其周围环境的连续实时视频传输到地球上的操作员。虽然这种任务的硬件方面令人生畏 - 电源,热,通信,机械和电气可靠性等。- 软件控制方面同样具有挑战性。特别是,流动站需要能够在各种地形上行驶并维护其操作的能力。以前的行星机器人(尤其是Lunokhod 2和Viking的手臂)的经验说明了远程操作员的费力和不可预测的时间延迟的漫画。更好的操作模式是监督远程运行,甚至是自动操作,其中流动站本身负责做出许多维持进度和安全所需的决定。我们已经开始了一项计划,以开发和演示技术,以在月球般的环境中启用远程,保护的远程操作和自动驾驶。特别是,我们正在研究立体声的技术
真菌和卵菌病原体的破坏性导致农作物产量大幅下降,这些病原体继续威胁着全球粮食安全。尽管人们已经使用化学和文化控制来保护农作物,但这些措施需要持续的成本和时间,而且植物病原体对杀菌剂的抗性报道也越来越多。保护农作物免受植物病原体侵害的最有效方法是培育抗病品种。然而,传统的育种方法既费力又费时。最近,CRISPR/Cas9 系统已被用于增强水稻、可可、小麦、番茄和葡萄等不同作物的抗病性。该系统允许通过 RNA 引导的 DNA 内切酶活性对各种生物进行精确的基因组编辑。除了作物的基因组编辑外,编辑真菌和卵菌病原体的基因组也可以为植物病害管理提供新的策略。本综述重点介绍了最近使用 CRISPR/Cas9 系统对植物抗真菌和卵菌病原体的研究。对于长期植物病害管理,利用 CRISPR/Cas9 针对多种植物抗病机制以及通过该系统探测真菌和卵菌基因组所获得的见解将成为有效的方法。
语言评估在诊断和治疗因神经源性疾病(无论是发育性还是后天性)引起的言语、语言和交流障碍患者方面起着至关重要的作用。然而,目前的评估方法是手动的、费力的、耗时的管理和评分方法,给患者带来了额外的压力。为了应对这些挑战,我们开发了 Open Brain AI (https://openbrainai.com)。这个计算平台利用创新的人工智能技术,即机器学习、自然语言处理、大型语言模型和自动语音到文本转录,自动分析多语言口语和书面语音。本文讨论了 Open Brain AI 的发展、人工智能语言处理模块以及话语宏观结构和微观结构的语言测量。快速自动的语言分析减轻了临床医生的负担,使他们能够简化工作流程,并分配更多的时间和资源来指导患者护理。Open Brain AI 是免费访问的,使临床医生能够进行关键数据分析,并将更多的注意力和资源放在治疗和治疗的其他关键方面。
监测纯净水中溶解的臭氧的含量通常是必须的,以确保适当的消毒和消毒水平。然而,由于比色测定需要费力的分析,因此量化构成挑战,而用于电化学过程分析的市售仪器却很昂贵,并且通常缺乏小型化和酌情安装的可能性。在这项研究中,提出了电位离子聚合物金属复合材料(IPMC)传感器,用于确定超纯水(UPW)系统中溶解的臭氧。通过浸渍还原方法处理市售的聚合物电解质膜以获得纳米结构的铂层。通过应用25种不同的合成条件,可获得2.2至12.6μm的层厚度。支持射线照相分析表明,浸渍溶液的铂浓度对获得的金属载荷具有最高的影响。传感器响应行为是通过langmuir pseudo-ishotherM模型来解释的,并允许溶解的臭氧定量以痕量痕迹小于10μgl-l-1。其他统计评估表明,可以高精度和显着性预测预期的PT加载和放射线降低水平(R 2
第二次世界大战结束不到一年,美国国家航空咨询委员会 (NACA) 将一小群飞行测试人员从兰利纪念航空实验室(后来成为弗吉尼亚州汉普顿的 NASA 兰利研究中心)调到加利福尼亚州莫哈维沙漠的穆洛克大干湖,对 XS-1 高速实验飞机进行飞行测试和航空研究。(XS 代表 eXperimental Sonic,后来缩写为 X-1。)第一批到达并开始工作的人员中有一群由 Roxanah Yancey 领导的“计算机”。这些“计算机”都是年轻女性,她们读取胶片上记录的飞行测试数据,将这些数据输入机械计算器,然后费力地绘制结果图。这是当今即时遥测数据(在地面多通道记录器、X-Y 绘图仪或阴极射线管上显示绘图信息)的繁重前身。多年来,Roxy 和她的“计算机”团队使用计算尺、面积计和计算器执行这些计算。高速、大内存计算机仍是十年或二十年后的事情;书呆子、极客和黑客仍在酝酿之中,计算机科学的大学学位还不存在。
急性髓细胞白血病 (AML) 是最常见的白血病类型,5 年生存率为 25%。AML 的标准治疗方法在过去几十年中没有改变。有前景的免疫疗法正在被开发用于治疗 AML;然而,这些方案需要非常费力和复杂的技术。我们使用与单克隆抗体结合的脂质体创建纳米 TCE 以实现特异性结合。我们还使用我们的 3D 培养系统重建骨髓微环境,并使用免疫功能低下的小鼠,以便将人类 AML 和 T 细胞与纳米 TCE 一起使用。我们表明 CD33 普遍存在于 AML 细胞中。与同种型相比,CD33 纳米 TCE 优先与 AML 细胞结合。我们表明纳米 TCE 可有效激活 T 细胞并在体外和体内诱导 AML 杀灭。我们的研究结果表明,我们的纳米TCE 技术是一种治疗 AML 的新型且很有前景的免疫疗法,并为在大型动物和患者中使用纳米TCE 的验证提供了补充研究基础。
人工智能 (AI) 正在医疗、军事、工业、家庭、法律、艺术等多个领域产生重大影响,因为 AI 能够执行多种角色,例如管理智能工厂、驾驶自动驾驶汽车、创建准确的天气预报、检测癌症和个人助理等。软件测试是测试软件是否存在某些异常行为的过程。软件测试是一个繁琐、费力且最耗时的过程。已经开发了自动化工具,有助于自动化测试过程的某些活动,以提高质量和及时交付。随着时间的推移,随着持续集成和持续交付 (CI/CD) 管道的加入,自动化工具的效率正在降低。测试社区正在转向 AI 来填补这一空白,因为 AI 能够在没有任何人工干预的情况下以比人类更快的速度检查代码中的错误和错误。在这项研究中,我们旨在认识到 AI 技术对 STLC 中各种软件测试活动或方面的影响。此外,该研究旨在识别和解释软件测试人员在将 AI 应用于测试时面临的一些最大挑战。论文还提出了未来人工智能对软件测试领域的一些关键贡献。
旨在表征和研究调控性数量性状基因座 (QTL) 的研究也揭示了个体之间的表型差异,包括疾病风险和药物反应的差异。调控性 QTL 效应高度依赖于环境,可能仅在特定条件下表现出来。原则上,诱导性多能干细胞 (iPSC) 可以分化成体内的任何细胞类型,当与单细胞 RNA 测序相结合时,iPSC 能够在不同环境中大规模映射调控性 QTL。挑战在于找到一种方法来快速扩展我们可以表征的细胞类型和细胞状态的维度。为了解决这个问题,我们开发了一种引导式 iPSC 分化方案,可以快速生成时间和功能各异的心脏相关细胞类型。在短短 8-10 天内,我们就能持续复制在费力的定向分化时间进程研究中看到的心脏祖细胞,以及成熟心脏类器官中存在的终末细胞类型。利用引导分化,人们可以快速表征空间和时间多样化的心脏细胞类型中的调控变异和基因与环境的相互作用。
