我们根据一个参数计算纯态下通用多体费米子系统的量子费歇尔信息。我们讨论了参数印在基态、状态系数或两者中的情况。在系数的参数依赖性来自哈密顿量演化的情况下,我们推导出一个特别简单的量子费歇尔信息表达式。我们将我们的发现应用于量子霍尔效应,并评估与有效哈密顿量基态系统磁场最佳测量相关的量子费歇尔信息。泡利原理强制占据高动量电子态导致灵敏度的“超海森堡”缩放,其幂律取决于传感器的几何形状。
材料中的费米能通常由电荷中性决定。只要材料是纯净的并且完全符合化学计量,就可以实现电荷中性。如果添加掺杂剂或材料变为非化学计量,则会产生电荷。阴离子位点的非化学计量取决于气体气氛。样品处理过程中的阳离子非化学计量可能是由于物种的挥发性或固体溶液形成过程中的不同溶解度造成的。无论如何,目标相的合成都依赖于材料补偿其加工过程中产生的电荷的能力。例如,可以通过在价带或导带中添加电子电荷来建立电荷中性。这并不总是可能的,例如在绝缘体中。在氧化物的情况下,材料可以与周围大气交换氧气。在
我们提出了一种数模量子算法,用于模拟 Hubbard-Holstein 模型,该模型描述了强关联费米子-玻色子相互作用,该算法采用具有超导电路的合适架构。它由一个由谐振器连接的线性量子比特链组成,模拟电子-电子 (ee) 和电子-声子 (ep) 相互作用以及费米子隧穿。我们的方法适用于费米子-玻色子模型(包括 Hubbard-Holstein 模型描述的模型)的数模量子计算 (DAQC)。我们展示了 DAQC 算法的电路深度减少,该算法是一系列数字步骤和模拟块,其性能优于纯数字方法。我们举例说明了半填充双位点 Hubbard-Holstein 模型的量子模拟。在这个例子中,我们获得了大于 0.98 的保真度,表明我们的提议适合研究固态系统的动态行为。我们的提议为计算化学、材料和高能物理的复杂系统打开了大门。
相互作用诱导的拓扑系统吸引了对其异国情调的概述,而不是拓扑绝缘子的单粒子图片。尤其是,强相关和有限掺杂之间的相互作用会导致破坏翻译对称性的非均匀溶液。在这项工作中,我们报告了在相互作用引起的Chern绝缘子中的拓扑条纹状态的外观。与非血管学系统中的类似条纹相反,在这里,我们观察到手性边缘状态在域壁顶上的外观。此外,我们通过分析抽水方案中量化的域的量化电荷来表征它们的拓扑性质。最后,我们专注于与观察到光学晶格中超电原子的最先进的量子模拟器相关的方面。特别是,我们提出了一种绝热状态制备方案和系统在实际空间中拓扑的检测方案。
谷物宽度和重量2(GW2)是一种E3-泛素连接酶编码基因,对谷物物种中谷物的大小和重量负调节。因此,建议禁用GW2基因活性以提高作物生产率。我们在这里表明,大麦GW2.1同源物的CRISPR/CAS介导的诱变会导致细长谷物的发展和蛋白质含量增加。同时,GW2.1功能的损失引起了由于尖峰数量减少和谷物设置低而引起的明显晶粒屈服不足。我们还表明,GW2.1缺乏作物产量和蛋白质含量引起的相反作用在很大程度上与培养条件无关。这些发现表明大麦GW2.1基因对于产量和晶粒性状之间的优化是必需的。总的来说,我们的数据表明,大麦中GW2.1基因活性的丧失与多效性效应相关,对生成器官的发展以及因此谷物产生产生了负面影响。我们的发现有助于更好地理解谷物的发育以及GW2.1控制大麦的定量和定性遗传改善中控制的UTI。
规范场论是高能物理 (HEP) 领域的基础理论,在解决量子色动力学、电弱统一、希格斯机制甚至超标准模型物理等若干关键问题中发挥着至关重要的作用。在时空格子上离散化规范场论可得到格子场论,该理论能够对无法解析求解的复杂物理系统进行强大的数值模拟。因此,人们在开发经典硬件和算法方面取得了巨大进步,其中马尔可夫链蒙特卡罗 (MCMC) 技术是最受欢迎的技术之一。尽管经典数值方法取得了巨大成功,但由于所谓的符号问题,一些问题在某些重要参数范围内变得难以解决。最近的理论研究表明,可以通过利用量子算法来绕过这些障碍 [1,2]。例如,已经开发出几种针对 (1+1)、(2+1) 和 (3+1) 维规范场论的资源高效量子算法 [3-10]。然而,到目前为止,仅使用目前可用的噪声中型量子 (NISQ) 设备 [17] 对 (1+1) [11-15] 和 (2+1) [16] 的情况进行了原理验证演示。要实现使用量子计算机计算 (3+1) 维现象的宏伟目标,需要在量子硬件和控制方案上做出重大改进。由费米实验室领导的超导量子材料与系统 (SQMS) 中心致力于在量子计算和传感领域带来变革性进步。其核心目标是解决当前量子设备固有的退相干挑战,为增强型量子处理器和传感器铺平道路。该计划的核心是在 SQMS 中心内开发基于三维 (3D) 超导腔的数字量子计算系统,旨在解决重要的 HEP 问题。这些系统利用最初为加速器物理设计的 3D 超导射频 (SRF) 腔,与传统的 2D 超导设备相比具有明显的优势。首先,3D 腔的基本模式拥有超过两秒的寿命,使其非常适合存储和操纵量子信息 [18]。其次,高效的控制和读出方案显着降低了低温和室温硬件开销。最后,对大型希尔伯特空间的固有访问提供了直接编码“qudits”的潜力,与传统的两级(量子位)编码相比,在模拟中具有优势 [19]。本过程安排如下。在第 2 节中,我们简要回顾了超导电路,特别是用于 transmon 量子位的电路量子电动力学 (cQED) 架构。在第 3 节中,我们介绍了 3D SRF 量子计算系统,并在第 4 节中讨论了最近的实验进展,最后在第 5 部分进行总结性发言。
排斥性费米克哈伯德模型(FHM)对于我们对强相关材料中电子行为的理解至关重要。在半纤维上,其基态的特征是抗铁磁相,它让人联想到高温丘脑超导体中的母体状态。将掺杂剂引入抗磁铁中,费米子哈伯德(FH)系统被认为会产生各种异国情调的量子阶段,包括条纹顺序,伪模和D-Wave超导性。然而,尽管在FHM的量子模拟中取得了显着进步,但在大规模量子模拟器中实现了低温抗铁磁相变的效果仍然难以捉摸。在这次演讲中,我将在三个维度上介绍低温排斥FH系统的最新进展,其中包括大约800,000个位点的均匀光学晶格中的锂6原子。使用旋转敏感的bragg衍射,我们测量系统的自旋结构因子(SSF)。我们通过调整相互作用强度,温度和掺杂浓度来观察SSF中的分歧,以在相变的各自临界值中,这与Heisenberg普遍性类别中的幂律相一致。我们的结果成功证明了FHM中的抗铁磁相变,为探索FHM的低温相图铺平了道路。
量子信息是一个引人入胜的主题,具有彻底改变我们对宇宙的理解的能力,并且已将其作为一种工具来理解在各种不同环境中的相对论现象,例如加速度和黑洞(称为异常和霍金效应)[1,2]。量子纠缠已被用作增强重力波检测器灵敏度的方法。参考文献[3,4]研究了通过收集相互量子相关性并讨论每个光束在干涉仪中传播的方式的差异来消除过滤腔的可行性。参考[5]提出了一种基于量子纠缠的重力波检测的量子速度计测量方案的新实现。除此之外,一些论文原则上研究了受重力波影响的量子特性,包括量子烙印[6],量子时间扩张[7],纠缠收集[8],激发/对单个原子的兴奋/去敏化[9,10]等。在[11]中还研究了重力场对量子纠缠的影响。,但大多数研究都集中在两体纠缠上。在本文中,我们将研究重力波对量子多体态的影响,并讨论实验检测对压力波的可行性。
b'Inatruction fermi液体范式(1,2)是现代冷凝物质理论的基石之一,提供了多体系统的有效描述,其基本激发是弱相互作用的费米金准式晶粒。费米液体的理论提供了理解为什么金属中的传导电子基本上是非相互作用的颗粒。费米液体可以以纵向密度振荡的形式支持集体模式,这些振荡与经典流体中的声音类似。它们的传播取决于该模式的角频率\ xcf \ x89是否高于或低于粒子间碰撞速率(3)\ xcf \ x84 1 coll。液体3他是一种中性的费米液体,是第一个从第一个声音模式(\ xcf \ XCF \ x89 \ xcf \ xcf \ x84 1 coll,即在流体动态状态)到零1 col(\ xcf xcf xcf xcf xcf xcf)(\ xcf \ xcf \ xcf \ xcf \ xcf \ xcf \ xcf \ x,观察到Coll,即,在无碰撞状态中)(4)。在具有远距离库仑相互作用的电子费米液体中,其中电子电子(EE)散射时间\ xcf \ x84 EE起着\ xcf \ x84 coll的作用,第一,零声折叠到Plasmon模式(5)。在这种模式下,从'