登上可靠的 Savannah。我们平安无事地飞越了亚瑟隘口,降落在 Hoki。John 好心地用他的飞机带了一个空的 20 升容器,Hamish 开车送我去当地的加油站,这样我就可以加满油箱,缓解我的燃料问题。团队合作建立在善意和共同兴趣的基础上。午餐结束后,我们谈论了下一步该做什么。在 Okarito 喝咖啡似乎是个好主意。西海岸的那部分景色令人惊叹,有开阔的沙滩、沼泽腹地、散布着小溪和白饵鱼群的大河,所有这些都上升到巨大的山脉背景中,山脉两侧是原生森林。这是一个真正神奇的国家,我们有幸在这里生活和飞行。Okarito 泻湖周围有一个红色的方框,表示禁飞区,以保护当地的白鹭群落。沿着海滩到达 Okarito 村的机场/围场,那里是露营地和海滩之间的一条人行道。低空飞行吓跑了带着婴儿车和小狗的妈妈们,我们平安着陆。在斯图尔特半公里的限度内(既然可以开车,为什么要走路呢)我们坐在阳光下喝咖啡、吃切片面包,和英国游客聊天。起飞后,我们认真讨论了穿过阿尔卑斯山回家的路。一切看起来都被云层覆盖
事件概要:2004 年 1 月 3 日,大约 02:45:06 UTC,04:45:06 当地时间,Flash Airlines FSH604 航班,一架波音 737-300,埃及注册号 SU-ZCF,从埃及南西奈的沙姆沙伊赫国际机场 (SSH) 起飞后不久坠毁在红海。该航班是一架飞往法国戴高乐机场 (CDG) 的客运包机,中途在开罗国际机场 (CAI) 加油。604 航班从沙姆沙伊赫机场起飞,机上有 2 名飞行员(机长和副驾驶)、1 名观察员、4 名机组人员、6 名下班机组人员和 135 名乘客。飞机因与红海的撞击力而损毁,无人生还。飞机从沙姆沙伊赫 22R 跑道起飞,于 UTC 时间 02:42:33 升空,大约在坠机前 2.5 分钟,并已获准从位于 22R 跑道正北的沙姆沙伊赫 VOR 站沿 306 径向线左转爬升。此爬升转弯使起飞航班能够获得足够的高度,然后继续飞越飞往开罗的航线上的高地。604 航班作为包机在埃及领空运行,根据埃及民航条例第 121 部分的规定运营
1998 年 9 月 2 日,瑞士航空 111 航班于 2018 年东部夏令时从美国纽约起飞,飞往瑞士日内瓦,机上载有 215 名乘客和 14 名机组人员。起飞后约 53 分钟,在 330 高度巡航时,机组人员闻到驾驶舱内有异味。随后,他们的注意力被吸引到他们后方和上方的一个未指明的区域,他们开始调查气味来源。他们最初看到的任何东西不久后就看不见了。他们一致认为异常的根源是空调系统。当他们评估他们所看到的或现在看到的肯定是烟雾时,他们决定改道。他们最初开始转向波士顿;然而,当空中交通服务提到新斯科舍省的哈利法克斯作为备选机场时,他们就将目的地改为哈利法克斯国际机场。当机组人员准备在哈利法克斯降落时,他们并不知道火势正在飞机前部天花板上方蔓延。在检测到异常气味约 13 分钟后,飞机的飞行数据记录器开始记录一系列与飞机系统相关的故障。机组人员宣布紧急情况并表示需要立即降落。大约一分钟后,无线电通信和二次雷达与飞机失去联系,飞行记录器停止工作。大约五分半钟后,飞机坠毁在加拿大新斯科舍省佩吉湾西南约五海里的海洋中。飞机被毁,无人生还。
2018 年 2 月 28 日 10:02 1,爱沙尼亚 Smartlynx 航空公司空客 A320-214(注册号 ES-SAN)从爱沙尼亚塔林机场起飞,进行训练飞行,机上有 2 名机组人员(机长和安全飞行员)、4 名学生和 1 名 ECAA 检查员。在成功进行几次 ILS 进近和触地复飞循环之后,于 15:04,飞机成功接地跑道,但在达到抬头速度时,飞机没有按预期对侧杆输入做出反应。短暂起飞后,飞机失去高度并在跑道尽头附近坠毁。在撞击中,飞机发动机撞到跑道,起落架舱门受损。在最初的撞击后,飞机从地面爬升至 1590 英尺并再次俯冲。飞行员能够通过手动俯仰配平和发动机推力来稳定飞行路径,并掉头返回跑道。机组宣布紧急降落,飞机获准紧急降落。在进近过程中,飞机的两个发动机都失去了动力。飞机于 15:11 在跑道入口前 150 米处着陆。着陆时,飞机轮胎爆裂,飞机偏离跑道,最后在跑道左侧 15 米处停下。安全飞行员和其中一名学生在这次事故中受到轻微撞击创伤。飞机起落架舱门、起落架、两个发动机舱、发动机和飞机机身在这次事故中受到严重损坏,导致机身损毁。
执行摘要 美国空军飞机事故调查 F-16C,T/N 86-0317 密歇根州海华沙国家森林 2020 年 12 月 8 日 2020 年 12 月 8 日晚,当地时间 (L) 大约 19:17,事故飞机 (MA),一架 F-16C,尾号 (T/N) 86-0317,坠毁在密歇根州海华沙国家森林的一片树林中。事故飞行员 (MP) 当时正在威斯康星州 (WI) 特鲁阿克斯空军国民警卫队基地第 115 战斗机联队执行航空控制警报 (ACA) 练习任务。撞击后,事故导致 MP 受重伤,MA 被毁。事故飞行计划是两机夜间练习 ACA 任务,包括由 WI 民航巡逻队 (CAP) 支持的空对空拦截作为关注轨迹。由于格林贝的天气状况,小型 CAP 飞机取消了飞行的拦截部分,事故出击以两机练习紧急起飞,使用备用仪表剖面。起飞后不久,在终止练习紧急起飞时,MP 发现由于没有卫星跟踪数据,全球定位系统 (GPS) 性能下降。MP 选择执行惯性导航系统 (INS) 的飞行中对准。在排除 GPS 无轨迹故障和飞行中对准期间,事故机组执行了领先交换。角色发生积极变化后不久,MA 进入天气条件,MP 与事故机失去目视联系
2018 年 2 月 20 日 08:38,一架 F-16CM,尾号 (T/N) 92-3883,在从日本三泽空军基地 (AB) 起飞的例行训练飞行中发生发动机起火,必须立即降落回三泽空军基地。事故飞机 (MA) 驻扎在日本三泽空军基地,隶属于第 35 战斗机联队第 13 战斗机中队。MA 发动机受损,外部油箱丢失,政府损失估计为 987,545.57 美元。事故航班 (MF) 由两架 F-16CM 飞机组成。事故航班的飞行前检查、起飞和滑行都平安无事,直到起飞阶段。事故飞行员 (MP) 离开 28 号跑道 (RWY),比事故长机飞行员 (MLP) 晚 15 秒。加力起飞后不久,三泽空中交通管制员通知 MP 和事故领航员 (MLP),MP 飞机后部出现大火。MLP 还就火灾问题联系了 MP。在 MP 上升过程中,他注意到空速和爬升率意外下降。MP 右转返回 28 跑道,当无法保持空速或高度时,MP 按照 F-16CM 关键行动程序抛弃了外挂物(外部油箱)。抛弃后,MA 恢复了一些空速,并实现了更好的爬升率,进入着陆位置。MP 降落在 28 跑道上,并完成了紧急发动机关闭和紧急地面出口
a 国立航空大学飞行学院,Dobrovolskogo Str., 1, Kropyvnytskyi, 25005, Ukraine b 国立航空大学,Liubomyra Huzara ave., 1, Kyiv, 03058, Ukraine c 国立航空航天大学 H.E.朱可夫斯基“哈尔科夫航空学院”,Chkalov Str., 17, Kharkiv, 61070, 乌克兰 d 哈尔科夫国立空军大学(I. Kozhedub 命名),Sumska Str., 77/79, Kharkiv, 61023,乌克兰 摘要 为了全面考虑影响飞行紧急情况(FE)中飞行员/空中交通管制员的协同决策(CDM)过程的因素,提出了一个自适应智能支持协同决策系统(ISSCDM)的概念模型,该系统考虑了管制对象(飞机)、环境(空中交通管制区和机场的特征)和空中导航系统运营商(飞行员/空中交通管制员的特征)的状态的动态、静态和专家信息。 div>FE 中的飞行员/空中交通管制员的 ISSCDM 使用基于人工神经网络的 CDM 模型。为了评估飞行员和空中交通管制员在 FE 中发生 CDM 的风险,开发了一个四层循环神经网络,并附加输入 - 偏差:第一层(输入) - FE 中的损失FE 取决于飞行情况;第二层(隐藏)——FE 格挡技术程序的规范时间;第三层(隐藏)——FE 格挡技术程序的规范顺序;第四层(输出)——风险FE 评估。由于偏差而开发的神经网络模型使得在执行 FE 规避技术程序时可以考虑飞行员和空中交通管制员之间的相互作用,并借助反馈来根据运营商对时间协调标准和规范行动序列遵守情况的动态数据,修正预测的CDM风险评估。借助 NeuroSolutions 神经模拟器(版本 7.1.1.1),以 FE“飞机起飞后爬升时发动机故障并起火”为例,构建了具有偏差的多层前馈感知器,并通过误差反向传播过程与老师一起训练。关键词 1 人工神经网络,偏差,协调行动,交互,神经模拟器,风险评估,技术程序
0.概要:a) 一架 Cessna-152 飞机于 2015 年 4 月 1 日在孟加拉国当地机场进行训练飞行时发生事故。机上有两名飞行员,一名是教练飞行员(飞行教练),另一名是实习飞行员(学生飞行员),他将接受单飞后训练。事故导致飞机坠毁。撞击点位于跑道附近的草地上。飞机在撞击时起火,导致实习飞行员死亡,教练飞行员重伤。调查按照附件 13 和 ICAO 相关 DOC 中规定的程序进行,并按照附件 13 第 6 章和相关附录以及 Doc 9756 AN/965 航空器事故和事故征候调查手册第 IV 部分编写报告。b) 飞行教员正在向学生飞行员演示低空迫降练习。起飞后,他提前右转,朝右侧顺风位置降落在对面的跑道上。高度太低,顺风位置太近,以至于飞机在完成反向转弯并越过跑道之前,就撞击了跑道边缘附近的地面,并在最后一次撞击后立即起火。学生飞行员当场死于撞击力和撞击后火灾。教官飞行员虽然严重烧伤,但 43 天后还是不治身亡。飞机因撞击力和撞击后起火而完全损毁。1.正文(事实信息) 1.1 简介信息: a) 冬季天气过后,飞行学校于 2015 年 2 月初恢复飞行活动。当天天气晴朗,地面风速约为 10 节,地面温度为 33 摄氏度。教官飞行员于 2014 年 10 月被飞行学校任命为名誉飞行教官。在飞行学校工作期间,飞行教官在一家私人货运航空公司找到了一份工作,接受 SAAB-340 飞机的培训。他原定于 2015 年 4 月某个时候出国接受 SAAB-340 模拟器培训。b) 当时飞行学校没有任何高级教练对学生进行必要的检查和技能测试。因此,这位飞行教练被提供给飞行学校,在出国培训之前进行检查和测试。d) 第二天是他每周的休息日,因此 3 月 30 日飞行学校没有飞行活动。因此,应飞行学校的要求,他从 2015 年 3 月 29 日开始飞行,每次飞行时间限制为 5 天。c) 飞行教练于 2015 年 3 月 29 日进行了一次越野飞行,此后又进行了五次飞行,飞行时间为 05:00。e) 训练照常于 3 月 31 日上午恢复。飞行教练于当地时间 09:10 开始飞行训练,并与八名不同的学生进行了八次训练飞行,
执行摘要 飞机事故调查 F-16CM,T/N 88-0510 意大利切尔维亚附近 2013 年 1 月 28 日 2013 年 1 月 28 日,当地时间 (L) 大约 19:03,一架 F-16CM,尾号 88-0510,隶属于意大利阿维亚诺空军基地 (AAB) 第 31 战斗机联队第 510 战斗机中队,作为三架 F-16CM 和一架 F-16DM 飞机编队的一部分离开 AAB,执行夜间训练任务。飞行员使用了夜视镜 (NVG)。事故发生前,由于空域天气阻碍了他们完成主要任务,事故飞行员 (MP) 和事故僚机 (MW) 协调了两次模拟炸弹袭击作为备用任务。第一次袭击没有包括任何模拟防御威胁反应,没有发生任何事件。在 1948L,起飞后约 45 分钟,MP 执行了威胁反应,最终进行了“最后一搏”防御机动。这发生在第二次袭击后的撤离过程中,最初导致事故飞机 (MA) 进入 45 度机头低、90 度左翼向下的姿态。大约 12 秒后,MP 表示他迷失了方向。在 MW 的提示下切换到内部飞机仪表,MP 尝试了恢复机动。执行“最后一搏”机动和后续恢复机动导致飞机内部声音警告和警示灯亮起,飞机外部所有文化照明提示和可辨别地平线消失,飞机姿态异常,导致下降率和空速过高。宪兵在空间上迷失方向,以至于他认为无法恢复 MA。大约在 19:49:24L,宪兵启动弹射。宪兵在弹射过程中遭受致命的头部和颈部创伤。MA 在亚得里亚海坠毁,距离弹射地点约四英里。MA 及其相关财产的损失价值 28,396,157.42 美元。没有对政府或私人财产造成其他损害。事故调查委员会主席通过明确和令人信服的证据发现,事故原因是 MP 未能有效从空间定向障碍中恢复,这是由于天气条件、MP 使用夜视镜、MA 的姿态和高速度以及 MP 视觉扫描故障等多种因素造成的。这导致 MP 误判了紧急弹射的需要。委员会主席还通过明确和令人信服的证据发现,在高速弹射时宪兵的头盔立即脱落、弹射座椅安全带松弛、弹射座椅离开 MA 时向左偏航,以及弹射座椅的减速伞展开后 40 倍重力回弹,导致了宪兵的受伤,并很快导致其死亡。
2018 年 2 月 20 日 2018 年 2 月 20 日,0838L,一架 F-16CM,尾号 (T/N) 92-3883,在从日本三泽空军基地 (AB) 起飞的例行训练飞行中发生发动机起火,必须立即降落回三泽空军基地。事故飞机 (MA) 驻扎在日本三泽空军基地,隶属于第 35 战斗机联队第 13 战斗机中队。MA 发动机受损,外部油箱丢失,政府损失估计为 987,545.57 美元。事故航班 (MF) 由两架 F-16CM 飞机组成。事故航班的飞行前检查、起飞和滑行都平安无事,直到起飞阶段。事故飞行员 (MP) 离开 28 号跑道 (RWY),比事故长机飞行员 (MLP) 晚离开加力起飞后不久,三泽空中交通管制员通知 MP 和事故领航员 (MLP),MP 飞机后部出现大火。MLP 还就火灾问题联系了 MP。在 MP 上升过程中,他注意到空速和爬升率意外下降。MP 右转返回 28 跑道,当无法保持空速或高度时,MP 按照 F-16CM 关键行动程序抛弃了外挂物(外部油箱)。抛弃后,MA 恢复了一些空速,并实现了更好的爬升率,进入着陆位置。MP 降落在 28 跑道上,并完成了紧急发动机关闭和紧急地面疏散关键行动程序。事故没有造成人员伤亡。MP 在事故过程中的行动是专注、精确和适当的;他的行为不是事故的原因。对维护程序的审查发现了导致事故的几项过去的行为。AIB 主席根据大量证据发现,事故原因是过时的部件断裂,导致发动机过热。2012 年,维护人员订购并安装了一个过时的部件——涡轮框架前整流罩,而几年前它被一个由更坚固的材料和设计制成的前整流罩所取代。物流系统随后运送了过时的前整流罩。维护人员使用更新版本的支架硬件将过时的前整流罩安装在事故发动机 (ME) 上。过时的前整流罩材料较弱,加上不匹配的硬件造成的磨损,最终导致前整流罩在起飞时断裂。断裂后,一块前整流罩被抬起并阻塞了发动机周围的冷却气流,导致阻塞附近区域过热并起火。 AIB 主席进一步通过大量证据发现,2012 年至 2015 年期间的维护实践是导致事故发生的重要原因。根据 10 USC§2254(d)事故调查人员在事故调查报告中对事故原因或促成事故的因素的意见(如果有)不得作为因事故引起的任何民事或刑事诉讼的证据,此类信息也不能被视为美国或这些结论或声明中提及的任何人对责任的承认。