UNL 研究的核心领域之一是使用飞秒激光对材料进行表面结构化。本质上,这会产生明确的纳米结构,使表面具有一些非常有趣的特性,包括超疏水性、极高的发射率、防结冰特性和降低阻力。一旦理解了这些方面,将对功能表面和界面领域产生深远影响。UNL 与 Leybold 合作开发了一种高度专业化的 UHV 处理和表面分析工具,该工具基于 Leybold 的模块化 UHV 平台产品线。
分析类型 – 有限元分析 (FEA) 初始条件: - 软和硬(1/4 硬铜)垫片 - 法兰材料 – 不锈钢 (304L) - 垫片和法兰可变形 - 初始温度 24 ° C
多环芳烃芳烃和pyr烯和吡啶的超高真空沉积在cu(111)表面上保持在1000 K的温度下,从而显示出导致石墨烯的形成。使用扫描隧道显微镜,X射线光电子光谱,角度分辨光发射光谱,拉曼光谱和低能电子衍射证明了石墨烯的存在。与更常用的甲烷或乙烯(例如甲烷或乙烯)相比,前体,倍吡林和吡啶是相对较大的芳香族分子。虽然当将pyrene用作前体时,可以天真地期待六边形石墨烯晶格的形成,但对于倍吡林来说,情况更为复杂。在这种情况下,只有5个和7元环的非替代叠层的非替代拓扑形成观察到的六边形石墨烯晶格。这样的重排,将非替代拓扑转化为替代拓扑,与先前描述类似拓扑改变的报道一致,包括分子倍吡林与pyrene的异构化。在此提出的热合成途径在相对较低的温度和超高真空条件下可以实现,这可以在严格控制和清洁的环境中进一步研究,而传统前体无法访问。
我们证明了在高功率深度硫化物增强腔的长期真空操作中,氟化物涂层与氧化物涂层镜的出色性能。在高真空度(10 - 8 MBAR)中,液化光学器件可以在一个小时的时间尺度上保持高达稳定的腔内功率的10 W创纪录的10 W,而对于氧化物光学元件,我们观察到在较低的室内功率下的快速降解,速度会随着功率而增加。观察到高真空中的降解后,我们可以用氧气回收氟化物和氧化物光学物质。但是,经过多次应用程序,这种恢复过程变得无效。对于氟化物涂层,我们看到氧气中的初始紫外线条件有助于改善光学元件的性能。在富含10-4 MBAR到1 MBAR的氧气环境中,氟化物光学器件可以在几个小时的时间尺度上稳定地保持高达20 W的腔内功率,而对于氧化物光学元件,氧化物的速度可以立即降解,速率随降低氧气压力而增加。
低释气性为防止真空室内压力急剧升高,真空兼容编码器不得释放大量气体。在超高真空中,每个部件都至关重要。例如,某些塑料会释出溶剂。这类塑料通常包含在电路板、粘合剂或涂层中,但在超高真空环境中部署的设备中应完全避免使用。这就是海德汉公司采用真空兼容电路板、粘合剂和涂层的原因。在超高真空环境中,必须将部件数量减至最少。例如,信号转换器应放在真空室外,这就是海德汉公司提供带有外部信号转换器的真空兼容编码器的原因。在仅需要高真空的应用中,这些设备也可放置在真空室内。
超高真空(UHV)条件现在可以很容易地实现和维护,这要归功于真空泵技术的新发展,例如低温涡轮分子泵,这些发展对于要达到高准确性以防止污染的过程至关重要。泄漏检测和
摘要:低维碳纳米结构的化学处理对于它们在未来的设备中的整合至关重要。在这里,我们通过结合N型分子石墨烯纳米丝带(GNR)的多步溶液合成与质量选择的超高真空电喷雾控制的离子光束在表面上通过扫描型触发显微镜在表面上和实际空间上的质量上的超高真空束沉积相结合,在原子上精确的工程中应用了一种新方法。我们演示了该方法如何仅在平面Ag(111)表面上的2.9 nm长度的GNR中仅产生可控数量的单个单个单一的GNR。这种方法可以通过采用地下合成协议并利用基板的反应性来进一步处理。在多次化学转化后,GNR提供了反应性的构建块,形成了延长的金属和有机坐标聚合物。
安捷伦真空产品部(原瓦里安真空)一直处于真空技术的前沿,从发明使超高真空成为可能的离子泵开始,通过扩散泵和泄漏检测技术的重大发展以及涡轮分子和干式涡旋泵的创新,直到最新的革命性 TwisTorr FS 涡轮泵和 IDP-15 干式涡旋泵,设定了行业标准。
44* 规格绝缘材料由 Raychem 公司专门制造,是其标准 44 规格(辐射交联聚烯烃/聚偏氟乙烯)绝缘材料的改良版,其中聚烯烃和聚偏氟乙烯基础材料均经过重新配制,以提高其同时承受超高真空、高温和电离辐射的能力。Novathene 绝缘材料是一种复合材料,其添加剂由 Raychem 专门合成,用于太空。Rayolin-N* 绝缘材料由 Raychem 专门制造,是其标准 Rayolin-N(辐射、改性、聚烯烃)绝缘材料的改良版,其中阻燃剂
专业领域是超高真空和压力设备和装置、纳米结构铁电体、纳米电子学、拉曼光谱、超晶格、自旋电子学、弛豫器、多铁性材料、高 k 电介质、高能量密度电容器的制造和特性研究、非易失性随机存取存储器元件和设备的开发、磁场传感器、高功率传输系统、绿色能源光伏设备、压电传感器、光学活性铁电弛豫器和血压相关传感器和设备的制造和特性研究。