1992 年在砂拉越的实地考察是在重要个人和组织的帮助下完成的。首先,我要衷心感谢砂拉越博物馆对我的实地研究的监督,特别是现任馆长 Peter Kedit 博士提供的实用建议和当地知识。我还要感谢其他乐于助人的博物馆工作人员,即 Tazudin Mohtar、Clement Sabang、Tuton Kaboy、Magdaline Kuih 和图书馆工作人员。砂拉越旅游协会(特别是 Rose Tan)和环境与旅游部旅游协调员 Denis Hon 提供了有关旅游的宝贵信息。我要感谢古晋的许多商业旅行社和导游,他们允许我参加 Than 长屋之旅,邀请我分享旅游餐,并分发游客调查表。我特别感谢亚洲陆上服务公司的 Ngu Ka Sen 的支持,这对我在 Nanga Stamang 的实地研究有很大帮助。
nipa sap是一种甜美的半透明饮料,起源于NIPA Palm(NYPA Fruticans)树。在砂拉越,NIPA SAP成为NIPA糖或本地称为古拉Apong的原材料。但是,NIPA SAP经历了自然发酵,从而改变了NIPA SAP的特性,包括味道,香气和质量。发酵的NIPA SAP是白色的,具有不愉快的香气和味道,这使其无法接受。因此,它不再适合制作NIPA糖。这项研究旨在确定NIPA PALM SAP从新鲜到发酵的物理化学和微生物变化。允许NIPA SAP在室温下进行自然发酵56天。在第一个星期每24小时收集样本,在随后的一周中每周一次。使用高性能液相色谱(HPLC)分析了所选的生理化学品质,而使用扩散板分析了微生物含量。新鲜的NIPA SAP显示出最高的糖(334.2±12 g/l),蔗糖作为主要糖(231.5±4.3 g/l),其次是果糖(42.1±1.2 g/L)和葡萄糖(29.7±3.2 g/L)。新鲜的NIPA SAP还具有最低的乙醇(0.08±0.03 g/L),乳酸(1.09±0.06 g/L)和乙酸(0.05±0.01 g/L)以及微生物和酵母菌浓度。后来,乙醇在第4天(9.80±0.1 g/l)开始积聚,最高峰为第21天(19.1±2.01 g/l)。微生物浓度也会改变,影响NIPA SAP的质量。由于NIPA SAP在砂拉越人民的生活方式中起着如此重要的作用,因此这项研究可以更好地了解其发酵过程的微生物学和生物化学。因此,应考虑正确处理新鲜NIPA SAP的适当计划,以确保增值产品生产的质量。
该图显示了 2022 年每 1,000 户家庭的热泵销量。百分比越高表示市场成熟,百分比越低表示有发展空间和销售潜力增加。大致有三组国家。最上面的组包括芬兰、挪威、瑞典、爱沙尼亚和丹麦,这些国家的每 1,000 户家庭的销量都超过 30 台。第二组的范围从西班牙每 1,000 户家庭售出的 10 台到意大利的 22 台。最后,落后的四个国家——德国、匈牙利、斯洛伐克和英国——都以非常低的热泵市场份额为特征。根据这一指标和迄今为止可用的 NECP 草案,下一节将对后续国家进行分析:匈牙利、斯洛伐克、西班牙、葡萄牙、荷兰、立陶宛和意大利。
抗干扰措施 使用高度复杂的微电子器件需要始终实施抗干扰和布线概念。现代机器的结构越紧凑,对性能的要求越高,这一点就变得越重要。以下安装说明和建议适用于“正常工业环境”。没有一种解决方案适合所有干扰环境。当采用以下措施时,编码器应处于完美的工作状态: • 在串行线的开始和结束处(例如,控制和最后一个编码器)用 120 电阻器(接收/发送和接收/发送之间)终止串行线。 • 编码器的接线应远离可能造成干扰的电源线。 • 屏蔽电缆横截面积至少为 4 mm²。 • 电缆横截面积至少为 0.14 mm²。 • 屏蔽和 0 V 的接线应尽可能呈放射状排列。 • 不要扭结或卡住电缆。 • 遵守数据表中给出的最小弯曲半径,并避免拉伸和剪切载荷。操作说明 Pepperl+Fuchs 制造的每个编码器都处于完美状态。为了确保此质量以及无故障运行,必须考虑以下规范:• 避免对外壳(特别是编码器轴)造成任何撞击,以及避免编码器轴的轴向和径向过载。• 仅使用合适的联轴器才能保证编码器的精度和使用寿命。• 必须同时打开和关闭编码器和后续设备(例如控制)的工作电压。• 必须在系统处于死区状态下进行任何接线工作。• 不得超过最大工作电压。设备必须在超低安全电压下运行。
本研究分析了与信任和风险相关的神经反应,以解释金融数字化决策。结果表明,大脑反应明显地表明了数字金融渠道采用的差异,而其他社会人口或行为指标则没有显示出这种差异。从方法论的角度来看,该研究探讨了数字金融渠道和工具的使用模式是否与心理和生物指标有关;它使用功能性磁共振成像 (fMRI) 来研究金融数字化决策是否与通过数字化和非数字化渠道进行的金融交易视频图像引起的大脑安全性反应有关;它进行了信任和风险神经实验,以确定它们对金融数字化决策的影响,并分析了大脑结构是否与金融数字化行为有关。研究结果表明,高频和低频用户的大脑功能以及体积和各向异性分数值存在差异。使用金融数字金融服务的频率越高,与不安全感相关的大脑激活程度就越高(视频任务期间的安全神经诱发反应越低,扣带回的白质微结构发生改变)。此外,数字金融渠道的高频用户在信任博弈中表现出与情绪处理相关的大脑区域的激活增强。这些发现对于设计通过技术增强金融包容性的公共政策以及私人金融机构的细分和服务分销策略具有重要意义。
摘要 — 电阻式 RAM (RAM) 固有的可变性被广泛认为是广泛采用该技术的主要障碍。此外,我们越深入高阻状态 (HRS),可变性就越高。在此背景下,本文提出了电路级设计策略来减轻 HRS 的可变性。在 RESET 操作期间,编程电流受到严格控制,同时调节 RRAM 单元两端的电压。从设计的角度来看,写入终止电路用于不断感测编程电流并在达到首选 RESET 电流时停止 RESET 脉冲。写入终止与电压调节器相结合,可严格控制 RESET 电压。本文首先回顾了 RRAM 可变性现象。然后,开发了一种优化的编程方案来控制 HRS 状态以接近零可变性。与经典的固定脉冲编程方案相比,可变性降低了 99%。
摘要:我们解决了由铅酸电池和氢存储组成的混合储能系统的控制问题。该系统由光伏板供电,为部分孤岛建筑供电。我们的目标是长期最大限度地减少建筑碳排放,同时确保 35% 的建筑能耗由现场生产的能源提供。为了实现这一长期目标,我们建议使用深度强化学习方法学习一种基于建筑和存储状态的控制策略。我们重新表述问题,将动作空间维度缩减为 1。这大大提高了所提出方法的性能。鉴于重新表述,我们提出了一种新算法 DDPG α rep ,使用深度确定性策略梯度 (DDPG) 来学习策略。一旦学会,就使用此策略执行存储控制。模拟表明,氢存储效率越高,学习越有效。
对于任何类型的电离辐射,在介质中发生的主要过程是电离和激发 ( 1 )。因此,在带电粒子、中子和伽马量子的影响下观察到的生物效应不是由它们的物理性质引起的,更不是由它们的来源引起的,而是由吸收能量的大小及其空间分布引起的,以线性能量转移 (LET) 为特征。LET 越高,生物损伤程度越严重。该程度决定了各种辐射的相对生物效应 (RBE)。在硼中子俘获疗法中,总吸收剂量是具有不同 RBE 的四个剂量成分的总和:硼剂量; 14 N(n,p) 14 C 反应的高 LET 剂量(“氮”剂量);快中子剂量;和 c 射线剂量。如前所述,“前两个剂量成分原则上无法测量”( 2 )。测量 BNCT 快中子剂量的方法也不存在,因为中子的能量通常明显低于 1 MeV,例如,裂变电离室不适用。然而,有相当多的行之有效的方法
摘要 — 旁道攻击使绕过电路中的加密组件成为可能。电源旁道 (PSC) 攻击因其非侵入性和经过验证的有效性而受到特别关注。除了专注于传统技术的现有技术之外,这是首次在 PSC 攻击背景下研究新兴的负电容晶体管 (NCFET) 技术的工作。我们在设计时实施了用于 PSC 评估的 CAD 流程。它利用行业标准设计工具,同时还采用广为接受的相关功率分析 (CPA) 攻击。使用基于 NCFET 的 7nm FinFET 技术的标准单元库及其对应的 CMOS 设置,我们的评估表明,由于负电容对开关功率有相当大的影响,基于 NCFET 的电路对经典 CPA 攻击更具弹性。我们还证明,铁电层越厚,基于 NCFET 的电路的弹性越高,这为优化和权衡打开了新的大门。
未来几个月和几年,环境可能会有多种可能的情况,但为了从不对冲利率的决定中获益,收益率必须上升到比当前收益率曲线所暗示的还要高。换句话说,债券投资者整体(“市场”)预计收益率会上升,当前价格反映了这种观点。如果利率如预期上升,那么所有期限的债券回报率将相同。如果收益率上升,但低于预期,那么较长期债券的回报率将更高,对冲负债将更好。此外,收益率越低,对利率变化的敏感度就越高。例如,2000 年 12 月,彭博巴克莱长期信贷指数的收益率为 7.94%,敏感度(久期)为 9.3%。截至 2020 年 6 月底,同一指数的收益率为 3.16%,敏感度(久期)为 15.0%。因此,2020 年负债对收益率进一步下降的敏感度将提高 50% 以上。