都柏林机场的主要增长来源仍然是基地航空公司和网络航空公司,尤其是飞往英国和欧洲目的地的航空公司。在都柏林机场拥有飞机的运营商对清晨和傍晚的运力有特殊要求,以便能够最有效地利用飞机。基地飞机每天可以从基地起飞两到四次,具体取决于航段长度。这加强了他们对机场的承诺,并为国家创造了更多的就业机会和更高的经济效益。23:00 至 07:00 之间限制使用北跑道导致运力分配不高效,否则这些运力本来可以用来满足基地航空公司及其乘客的特殊需求以及其他运营商的需求。
本行动计划所载建议的核心是统一和一致地应用国际民航组织的规定。这些建议及其支持指导材料主要针对欧洲民航会议 (ECAC) 地区的国家,同时仍然适用于全球。国家航空安全当局应决定各国适用组织的实施战略。这些建议主要是通用的,负责的组织应在考虑当地情况后决定具体细节,例如进行民用和军事联合行动的机场。
本行动计划所载建议的核心是统一和一致地应用国际民航组织的规定。这些建议及其支持指导材料主要针对欧洲民航会议 (ecac) 地区的国家,同时保持全球适用性。国家航空安全当局应决定由各相关组织在各国实施的战略。这些建议主要是通用的,负责的组织应在考虑当地情况(例如进行联合民事和军事行动的机场)后决定具体细节。
由于大多数机场空间有限,通常只有更有效地利用现有平行跑道或修建额外的平行跑道才能增加机场容量。本研究重点关注与独立平行进近相关的碰撞风险以及可判断碰撞风险可接受的最小平行跑道间距。研究了几种风险措施和方法对目标安全水平 (TLS) 评估的适用性。两种方法的应用提供了一个 TLS 区域,定义了决策者可以从中选择 TLS 的范围。开发了一种风险模型,用于确定在仪表气象条件 (IMC) 下进行独立平行进近的飞机之间的碰撞风险,从而使用仪表着陆系统 (ILS) 程序。数值评估表明,在各种运行条件下,尤其是在接近航向道转弯处和双机复飞期间,两架飞机之间的碰撞概率可能很大。为了尽量将碰撞风险保持在较低且可接受的水平,确定了三种降低风险的措施。假设应用了这些措施,并假设使用来自指定 TLS 区域的 TLS,如果跑道间距大于 1270 米,则独立平行进近可能被判断为足够安全,如果间距小于 930 米,则不安全。
摘要 2009 年 3 月 20 日晚,一架空客 A340-541(注册号为 A6-ERG,航班号为阿联酋航空 EK407)从维多利亚州墨尔本机场起飞时,机尾撞地并冲出跑道尽头,机上载有 18 名机组人员和 257 名乘客。调查发现,事故是由于使用了错误的起飞性能参数造成的。这些错误参数本身是由于在起飞前的准备过程中,无意中将错误的起飞重量输入到电子飞行包中造成的。由于多种因素,错误的数据输入在后续检查中未被发现。作为事故调查的一部分,ATSB 开展了一项名为“起飞性能计算和输入错误:全球视角”的研究,以回顾 2009 年前 20 年内发生的多起事件和事故所涉及的因素。该报告指出,这起事故只是众多涉及使用错误起飞性能参数的事件之一,涉及各种飞机类型、运营商、地点和操作类型。与正在调查的事故一样,这些事件的一个共同点是机组人员显然无法执行“合理性检查”来确定参数何时不适合飞行。同样重要的是,机组人员通常直到起飞运行进行到很远时才发现起飞性能下降,甚至根本无法发现。调查发现,民用运输飞机使用的起飞性能理念并未要求机组人员监控飞机的加速度或提供必须达到的参考加速度。针对此次事故,运营商和飞机制造商已经采取或正在采取一系列安全措施。此外,澳大利亚运输安全局 (ATSB) 已向美国联邦航空管理局发出安全建议,并向国际航空运输协会和飞行安全基金会发出安全咨询通知,努力将未来发生类似事件的可能性降至最低。
II 近年来,定期航班延误的普遍存在引起了人们对使用新技术的极大兴趣,这些新技术有望提高机场容量,尤其是在恶劣天气下。对新技术的兴趣的一个结果是精密跑道监控 (PRM) 系统的开发。PRM 系统使用增强的雷达和显示功能,结合自动安全警报,可以在仪表气象条件下安全地对相距小于 4300 英尺(当前不使用 PRM 的最小间隔)的平行跑道进行独立排序进近。在过去几年中,林肯实验室开展了一项 PRM 开发计划,其中包括现场数据收集、演示、性能评估和风险分析。部分基于该计划的结果,美国联邦航空局最近批准在用 PRM 系统监控的情况下对相距 3400 英尺或以上的平行跑道进行独立排序进近。美国联邦航空局还启动了一项实施计划,在美国几个主要机场安装 PRM 系统。本文报告了林肯实验室开展的现场活动的结果;使用这些结果来验证 PRM 系统的性能和安全性,并继续开发林肯实验室 PRM 计划的一部分。O
航空业已见证了许多新型航空电子系统(例如,姿态指示器、无线电导航、仪表着陆系统、近地警告系统)的引入,这些系统旨在克服飞行员外部能见度有限的问题。然而,能见度有限仍然是影响全球航空运营安全和容量的最关键因素。仅在商业航空业,全球超过 30% 的致命事故被归类为可控飞行撞地 (CFIT),即正常运转、机械完好的飞机撞上地形或障碍物,而机组人员由于缺乏外部视觉参考或地形/危险态势感知受损而无法看到。在通用航空业,最大的事故类别是持续飞行进入仪表气象条件,即非仪表等级飞行员继续飞入恶化的天气和能见度,导致视野消失,并可能撞上意外地形或空间迷失方向并失去控制。最后,影响机场延误的最大因素是能见度有限,当天气条件低于目视飞行规则操作时,能见度会降低跑道容量并增加空中交通分离所需的距离。
附录 A – 了解飞机超跑和下冲 简介 ACRP 4-01 项目的目标是调查飞机超跑和下冲事件,以评估跑道安全区提供的保护。了解超跑和下冲事件如何发生对于机场运营商和监管机构识别与运营相关的危险并管理其设施中与此类事件相关的风险至关重要。此外,他们将更好地理解安全区如何提供一定程度的保护,并可能找到替代方案来减轻此类事件的后果。跑道安全区 (RSA) 有助于减轻下冲和超跑事件的后果。它们在跑道周围提供额外的平滑表面,飞机可以利用这些表面停下来或继续着陆。要了解超跑和下冲是如何发生的,有必要了解飞行员在飞行的着陆和起飞阶段使用的程序和可用的资源。此外,有必要了解天气条件、跑道条件和人为错误如何对运营产生负面影响并导致超跑或下冲。着陆 大型运输机的空速和姿态需要调整以适应着陆。空速保持在失速速度以上加上安全裕度,并保持恒定的下降速度。在着陆前,下降速度降低到每分钟几英尺,从而实现轻触地。着陆
当飞机、车辆、地面人员或物体与在空中交通管制 (ATC) [1] 监督下起飞或降落在机场的飞机产生碰撞危险时,就会发生跑道入侵事件。尽管联邦航空管理局 (FAA) 尽了最大努力,但跑道入侵事件仍然越来越频繁。美国报告的入侵事件数量从 1993 年的 186 起增加到 2000 年的 431 起,增长了 132%。最近,美国国家运输安全委员会 (NTSB) 提出了减少跑道入侵的具体建议,其中包括建议 FAA“要求所有提供定期客运服务的机场都配备地面移动安全系统,以防止跑道入侵;该系统应能够直接向机组人员发出警告”[2]。为此,NASA 及其行业合作伙伴开发了一种先进的地面移动引导和控制系统 (A-SMGCS) 架构和操作概念,旨在防止跑道入侵,同时提高操作能力。该操作概念和系统设计已在主要机场设施的全任务模拟和操作飞行测试实验中进行了测试。将介绍轶事、定性和具体的定量结果,以及对装备技术准备情况的评估。