○ Introduction to Particle Flow ○ Insights into the Neural Network Design ○ Metrics Overview: Building Blocks for Evaluation ○ Dataset - Jet-like Particle Gun ○ Results - Energy and Angular Resolution ○ Results - Reconstructed Mass ○ Results - Efficiency and Fake Rates ○ Results - Particle Identification 3.摘要和下一步
处理多个帧的算法对于在较大范围搜索中识别昏暗的卫星信号和轨道运动至关重要。检测方法之前,要查看具有目标信号并将所有帧数据提供给跟踪器的多个图像,并将检测决策延迟直至形成轨道。本文旨在通过对所有帧进行二项式决策规则进行建模,以估算低SNR跟踪算法的性能。作为系统设计分析的一部分,有必要根据各种参数来预测搜索的性能,例如光圈,传输,检测器灵敏度,帧数,最小可检测的目标大小,衰减和其他因素。这些搜索算法的性能可以由Monte Carle(MC)模拟确定,该模拟需要许多迭代来创建表来描述预期的系统性能。不幸的是,当系统参数和目标特性变化导致任务延迟时,这些基于MC的预测可能需要大量返工。这项工作旨在描述一个分析表达式,以描述场景的预期检测和虚假警报性能,该表达式将允许在太空域名(SDA)任务中观察平台的搜索和收集任务。另外,分析表达可以直接通过对结果的主动性理解并更好地理解任何操作异常。
摘要:天基目标监视对航天安全具有重要意义。然而,随着空间环境的日益复杂,恒星目标和强噪声干扰给空间目标检测带来了困难。同时,由于资源限制,星载处理平台难以兼顾实时性和计算性能。异构多核架构具备相应的处理能力,为天基应用提供了兼具实时性和计算性能的硬件实现平台。本文首次提出了一种光学图像序列中空间目标的多阶段联合检测与跟踪模型(MJDTM)。该模型结合改进的局部对比度法和卡尔曼滤波对潜在目标进行检测和跟踪,并利用运动状态的差异对恒星目标进行抑制。然后,建立了基于现场可编程门阵列(FPGA)和数字信号处理器(DSP)的异构多核处理系统,作为天基图像处理系统。最后,在上述图像处理系统上对MJDTM进行了优化和实现。使用模拟和实际图像序列进行的实验检验了MJDTM的准确性和效率,其检测概率为95%,而误报率为10 −4 。实验结果表明,该算法硬件实现仅需22.064 ms即可检测出1024×1024像素图像中的目标,满足天基监视的实时性要求。
可再生能源在替代化石燃料资源方面发挥着至关重要的作用,而太阳能是这些资源之一,它被认为是环境友好的,并且在过去几年中得到了越来越多的使用。使用太阳能电池板时的主要问题是工作点会随着太阳辐照强度和太阳能电池板表面温度的变化而波动。当负载直接与太阳能电池板耦合时,在大多数情况下,输送的功率不会达到最大功率,因此需要最大功率点跟踪控制器来使系统高效运行,从而使电压转换电路的负载和输入阻抗之间匹配运行,通过这种运行,工作点处于最大功率。在本研究中,使用 MATLAB-2016a 程序对最大功率点跟踪系统进行了仿真,并使用了多种算法:扰动观察算法、增量电导算法、滑模控制器和电压转换电路(降压转换器)的负载与输入阻抗匹配的随机搜索算法。设计并搭建了同步降压转换器电路,然后实际实施系统。微控制器 arduino UNO 用于实现跟踪算法。实际系统实施中使用扰动和观察算法。。结果表明,滑模控制器在获得最大功率方面比传统算法快两倍以上,比随机搜索算法快约 6 毫秒,随机搜索算法比传统算法快约 1.5 倍,并且当辐照强度发生变化时,响应速度更快,可以访问新的最大功率点。SMC 的性能优于传统算法,随机搜索算法优于传统算法,其性能非常接近滑模控制器的性能。实际实施的响应非常快且强大。
Beta 方法包括应用可变 D 步骤,以便系统在瞬态状态下快速响应,而在永久状态下无振荡 [32]。所述增加是参数β的函数,该参数β是在每个采样中根据操作点[32]和面板的特征参数计算的。MPP 中的这一参数对于不同的大气条件保持在一个小范围内,并且随着远离 MPP [9]、[11] 而变化。因此,虽然复杂性更高,但可以获得更精确和更快的操作。主要缺点是需要提前知道光伏组件的参数[9],以计算不同大气条件下MPP中的β区间。