13基线年本列表示银行用来为煤炭部门设定其2030年脱碳目标的基线年。目标基础年份不得超过目标设定之前的两个完整报告。银行可以在设定进一步的目标或特殊经济环境的情况下和/或银行自身控制以外的数据质量问题的情况下,如果允许他们在大多数目标中使用相同的基准年和/或基本年度否则将是非典型的,则将长达四年。银行应在这种情况下提供理由。
然而,这项研究也有局限性。虽然这项调查已经并将继续提供关于对数据和人工智能使用的态度的重要和新颖的见解,但调查结果应该放在背景中,并与其他研究一起考虑。人们对“数据”的态度并不单一:不同的群体对数据的理解和看法不同,并且取决于许多背景因素。重要的是,我们要针对特定用例开展深入的公众参与活动,并利用替代方法来补充调查研究——例如,进行审议焦点小组,用公众自己的话听取他们的意见,或进行行为实验,看看公众在实践中的行为。本报告中的数据是事实和中立的。我们不寻求提出建议或提供超出我们研究范围的解释,应该与该领域的其他研究一起进行解读。
2024 年的《培育原创、促进艺术和保障娱乐安全(禁止假冒)法案》将要求个人或公司对制作、托管或共享个人在视听作品、图像或录音中表演的数字复制品承担损害赔偿责任,而该个人从未实际出现或以其他方式获得批准——包括由生成人工智能 (AI) 创建的数字复制品。托管未经授权复制品的在线服务必须在收到权利人的通知后删除该复制品。为公认的《第一修正案》保护提供了例外,例如纪录片和传记作品,或出于评论、批评或模仿等目的。该法案还将在很大程度上取代涉及数字复制品的州法律,以创建可行的国家标准。发起人:参议员 Coons (D-DE) 最新行动:7/31/24 - 提交并提交给参议院 JUD 委员会。
外源睾丸激素对黑孟加拉山羊附睾后发育的影响6 1719490692 Abul Kasem kasem kasemrufish92@gmail.com拉杰沙希大学渔业系的影响naznin nahar nazninnila59@gmail.com拉杰沙希大学渔业系的生产力评估巴达虾(Penaeus monodon)农场,来自孟加拉国南部
本文提出了针对非BOLONOMIC车辆的稳定跟踪控制规则。通过使用Liapunov函数来证明该规则的稳定性。对车辆的输入是参考姿势(x,y ,, 8)'和参考速度(v,ar)'。本文的主要目的是提出一个控制规则,以找到合理的目标线性和旋转速度(v,a)'。线性化系统的微分方程对于确定对小干扰的关键倾倒参数很有用。为了避免任何滑倒,引入了速度/加速度限制方案。有或没有速度/加速度限制器的几个合理结果。本文提出的控制规则和限制方法是与机器人无关的,因此可以应用于具有死亡算力能力的各种移动机器人。此方法是在自动移动机器人Yamabico-11上实现的。获得的实验结果接近速度/加速度限制器的结果。
人类情感识别一直是心理物理学和计算机视觉的重要主题。但是,经常发布的数据集有许多局限性。进行检查,大多数数据集都包含仅包含有关面部表情的信息的框架。由于以前的数据集的局限性,很难理解影响人类识别的机制,或者在这些数据集中训练的计算机视觉模型上对人类的识别良好。在这项工作中,我们介绍了一个全新的大型数据集,基于视频的情感并影响上下文数据集(VEATIC)中的跟踪,可以征服先前数据集的限制。Veatic在好莱坞电影,纪录片和家庭视频中有124个视频片段,并通过实时注释进行了连续的价和唤醒评级。与数据集一起,我们采用了一项新的计算机视觉任务,以通过每个视频框架中的上下文和字符信息来推断所选字符的影响。此外,我们提出了一个简单的模型来基准这项新的计算机视觉任务。我们还使用数据集与其他类似数据集进行了预处理模型的性能。实验显示了通过VEATIC验证的模型的竞争结果,表明VEATIC的普遍性。我们的数据集可从https://veatic.github.io获得。
开发了使用粒子滤波器(递归蒙特卡罗方法)解决定位、导航和跟踪问题的框架。提出了一种粒子维度简约的通用算法。汽车和航空应用从数字上说明了与基于卡尔曼滤波器的传统算法相比的优势。这里使用非线性模型和非高斯噪声是准确度提高的主要原因。更具体地说,我们描述了如何使用地图匹配技术将飞机的海拔剖面图与数字海拔地图进行匹配,将汽车的水平行驶路径与街道地图进行匹配。在这两种情况下,都可以实时实现,测试表明,其准确度可与卫星导航(如 GPS)相媲美,但完整性更高。基于模拟,我们还讨论了粒子滤波器如何用于基于手机测量的定位、飞机的综合导航以及飞机和汽车的目标跟踪。最后,粒子滤波器为导航和跟踪的组合任务提供了一个有希望的解决方案,这在空中搜寻和汽车防撞上都有所体现。
阅读过程中抽象的眼动动作提供了一个了解认知过程和语言理解的窗口,但是缺少中断数据的稀缺性 - 学习者在日常学习环境中经常遇到这些数据 - 妨碍了智能学习技术发展的进步。我们介绍了Interead - 一种新颖的50个参与者数据集的目光数据集,该数据集在对现实世界文本的自定进度读取过程中记录。Interead进一步提供了整个文本中散布的中断的细粒度注释以及这些中断产生的恢复滞后。中断。我们通过报告有关凝视行为的不同度量的跨学科分析来验证我们的数据集。与先前的研究一致,我们的分析表明,中断以及单词长度和单词频率效应会显着影响阅读过程中的眼睛运动。我们还探索了数据集中的个体差异,从而阐明了量身定制的教育解决方案的潜力。可以从我们的数据集访问网页:https://www.ife.uni-stuttgart.de/en/llis/research/datasets/。
自主机器人系统近年来引起了越来越多的关注,在这种环境中,环境是机器人导航,人类机器人互动和决策的关键步骤。现实世界机器人系统通常会从多个传感器中收集视觉数据,并经过重新识别以识别许多对象及其在复杂的人拥挤的设置中。传统的基准标记,依赖单个传感器和有限的对象类和场景,无法提供机器人对策划导航,互动和决策的需求的综合环境理解。作为JRDB数据集的扩展,我们揭开了一种新颖的开放世界式分割和跟踪基准,介绍了一种新型的开放世界式分割和跟踪基准。JRDB-Panotrack包括(1)各种数据室内和室外拥挤的场景,以及
我们提出了一个新的机器学习基准,用于阅读任务分类,目的是在计算语言处理与认知神经科学之间的相交中推进脑电图和眼睛追踪研究。基准任务由一个跨主体分类组成,以区分两个阅读范式:正常阅读和特定于任务的读数。基准的数据基于苏黎世的认知语言处理语料库(ZUCO 2.0),该语料库提供了同时引人注目的视线和来自英语句子的自然阅读的EEG信号。培训数据集已公开可用,我们提出了新记录的隐藏测试集。我们为此任务提供多种可靠的基线方法,并讨论未来的改进。我们发布代码,并提供易于使用的界面,以使用随附的公共排行榜:www.zuco-benchmark.com评估新方法。
