第一次迭代环境管理计划 (EMP1) 指定了拟议开发项目需要实现的预期环境成果。如果必须以某种方式实现特定的缓解措施,则在 EMP1 中确定。本报告附录 A 的 A1 表列出了组成 EMP1 的文件和附件的详细清单。 第二次迭代环境管理计划 (EMP2) 将阐述如何实现这些环境成果,并更详细地说明要实施的具体措施。EMP2 可以按方案拆分(而不是按主题拆分),这意味着将为每个方案、该方案的一部分或不同方案的组合制作并提交一份 EMP2 以供批准。如果国务卿有意发布命令,则 EMP2 需要获得国务卿的批准。建议的 DCO 第 53 条在第 (1) 至 (9) 段中规定了批准和修改 EMP2 的任何部分或全部的权力。 第三版环境管理计划 (EMP3) 实际上是一个可操作的环境管理计划,它将规定如何运营道路以符合需要实施的持续缓解措施。这些权力包含在建议的 DCO 第 (10) 和 (11) 段中。
我们用七章来介绍这个 8.7 万亿美元经济体的最新概况。第一章揭示了 2023 年的一些创纪录成就,强调了跨大西洋经济在持续的地缘政治意外和经济冲击面前的强劲性质。它还更新了西方对乌克兰的支持以及西方制裁对俄罗斯的影响。第二章通过“八条纽带”刷新了我们理解深度融合的跨大西洋经济的基本框架。第三章讨论了美国、欧洲和中国在降低相互不对称依赖的风险方面如何各自推进“保护、促进和合作”议程。第四章着眼于改变跨大西洋能源经济的三大转变。第五章探讨了跨大西洋数字经济,它在许多方面已成为跨大西洋商业联系的支柱。第六章概述了欧洲与美国的商业关系,第七章概述了美国与欧洲的商业关系。所附图表提供了欧洲与美国 50 个州之间的就业、贸易和投资,以及美国与欧盟 27 个成员国以及挪威、瑞士、土耳其、乌克兰和英国之间的就业、贸易和投资的最新信息。
摘要 — 感知和学习算法的进步已使机器人进行人体检测的解决方案越来越成熟,特别是在某些用例中,例如自动驾驶汽车的行人检测或消费者环境中的近距离人体检测。尽管取得了这些进展,但一个简单的问题:哪种传感器-算法组合最适合手头的人体检测任务?仍然很难回答。在本文中,我们通过对机器人技术中常用的传感器-算法组合进行系统的跨模态分析来解决这个问题。我们比较了最先进的人体检测器在具有挑战性的工业用例中对 2D 范围数据、3D 激光雷达和 RGB-D 数据及其选定组合的性能。我们进一步解决了工业目标领域数据稀缺的相关问题,并且最近对 3D 点云中人体检测的研究主要集中在自动驾驶场景上。为了将这些方法上的进步用于机器人应用,我们利用一种简单但有效的多传感器迁移学习策略,通过扩展强大的基于图像的 RGB-D 检测器,以弱 3D 边界框标签的形式为激光雷达检测器提供跨模态监督。我们的结果表明,在检测性能、泛化、帧速率和计算要求方面,不同方法之间存在很大差异。由于我们的用例包含代表广泛服务机器人应用的困难,我们相信这些结果为进一步研究指出了相关的开放挑战,并为从业者设计他们的机器人系统提供了宝贵的支持。
摘要 本报告对应于 OPEN DEI 项目的“WP2 - OPEN DEI 跨行业数字平台联盟”的可交付成果 D2.1,并为构建数字平台的参考架构领域最相关的工作提供了有用的见解,以支持 OPEN DEI 所针对的四个行业(即制造业、农业、能源和医疗保健)的数字化转型之旅。第 2 章中介绍的最新技术描述了通用架构和标准架构,而第 3 章介绍了 OPEN DEI 所涉及领域的一些相关项目示例。第 4 章代表了 OPEN DEI 参考架构框架 (RAF) 规范的基础,定义了基本原则、互操作性需求和 RAF 规范的首次发布。OPEN DEI RAF 将基于 6 个主要基本原则(互操作性、开放性、可重用性、避免供应商锁定、安全性和隐私性、支持数据经济)并遵循 6C 架构模型。此处描述的见解将用于 OPEN DEI 项目的后续活动(例如跨领域工作组),而进一步的进展和经验教训将在本报告的下一轮迭代中记录,该报告将于 M24(2021 年 5 月)发布。
摘要:在现实世界中,对一个对象(例如:人、机器等)的分析和决策并不依赖于单个领域(例如:社交网络、地理、实时媒体等)或单个来源。为了提供更好的调查和质量推理,需要组合(融合)来自不同来源的数据。数据集成用于集成来自不同来源的数据以增强信息的目的,但它不适合大数据集。数据融合是一种数据分析技术,它融合了代表同一对象的多种单独类型的数据(大数据集)。针对一个对象的多种数据协同工作产生的效果大于它们单独效果的总和。数据融合的关键挑战是很难检索和融合不同领域的数据。为了解决这个问题,提出了跨域数据融合应用和技术。本文全面讨论了数据融合的发展及其应用。提出了一种用于医疗保健领域的预测模型的新框架。关键词:大数据、数据融合、数据集成、跨域数据融合、沉淀。 1. 简介 传统数据挖掘仅分析项目的物理存在与否,不考虑数据的语义方面 [1]。但在大数据时代,人类每天都会从各种来源(例如传感器、社交媒体、物联网、外部互联网)以各种形式创建出数以千万亿字节的数据
社区、校园等需要停车位的原因有很多。例如,在某些时候,车主需要停车并获得服务或提供服务。大学对停车位的需求很高。这是因为校园人口增长,地面停车场减少,尤其是在新建筑周围。这些校园是从事学术和支持服务活动的学生和教职员工集中的地方。因此,停车需求往往是一个问题,因为现有的停车位供应不足,停车管理策略也不够有效(Neves、Barata 和 Silva 2010)。与较大的城市中心一样,大学校园的停车位需求也呈动态增长态势,这意味着停车位需求高,但供应不足。快速的城市化对大学校园的发展产生了影响,包括人口增加、物质发展扩张和辅助设施需求增加。在随后的物质发展和扩张中,停车设施尤其没有受到重视。后果是,人们越来越依赖机动车,这显然是由于该国社会经济发展状况的改善而带来的。大学社区的工作人员和学生也不例外,他们现在有能力让人们买得起汽车和拥有汽车成为可能 (Shaw, 2016)。
摘要可编程活动(PAM)结合了信息处理和能量转导。信息的物理实施例可以是磁性旋转的方向,一系列分子,离子的浓度或材料的形状。能量转导涉及化学,磁或电能转化为机械能。主要类PAM由具有许多交互单元的材料系统组成。这些单元可以是分子,胶体,微生物,液滴或机器人。由于单元之间的相互作用决定了PAM的属性和功能,因此PAM的可编程性在很大程度上是由于可编程相互作用所致。在这里,我们回顾了从超分子系统到宏观机器人群的PAM。我们专注于不同尺度上的相互作用,并描述这些(通常是局部)相互作用如何产生全局属性和功能。对PAM的研究将有助于追求广义晶体学以及对复杂性和出现的研究。最后,我们思考使用PAM建立软性大脑的机遇和挑战。
海洋酸化是由人类活动的二氧化碳(CO₂)升高驱动的,对海洋生态系统和全球生物多样性越来越严重。海洋从大气中吸收了大约30%的人类收成的Co co(WMO Green House Gas Bulletin,2023年),从而导致海洋化学的广泛变化。这些上升的CO₂水平触发化学过程,从而减少了海水的pH值并以损害许多海洋生物的方式改变了海洋的化学。在沿海地区,诸如营养素爆发和污染等因素会加剧酸化,从而形成Rapi d ph Cha n ge的“热点”。tly,tly cha nese dis cha nes con prupt ma rine food w ebs,dimi nish ecosy stem servi ces ces,并对依靠海洋资源依靠其生计,foo d和文化实践的数十亿人构成了重大风险(Bindoff等,2019)。
简介:大量研究证明了双语的创造力。不同的思维和融合思维被认为是创造力的两个最重要的组成部分。各种研究(尽管不是全部)的研究得出的结论是,双语儿童的表现优于不同思维中的单语儿童,但是,到目前为止,尚无对儿童或青少年的研究,探讨了双语和融合思维之间的关系,或者探索了双语和创造力之间相互作用的大脑结构基础。这项研究旨在探讨双语主义对基于神经心理学评估的儿童和青少年的收敛性和分歧思维的影响,以及通过对儿童和青少年的区域灰质体积(RGMV)和皮质厚度的整个区域灰质体积(RGMV)的全脑分析对双语对创造力的影响的可能性基础。
4卫生与康复系,瑞典哥德堡大学Sahlgrenska Academy神经科学与生理学研究所物理治疗部门。 哥德堡大学以人为中心的护理中心(GPCC),Sahlgrenska Academy,哥德堡大学,哥德堡大学,瑞典4卫生与康复系,瑞典哥德堡大学Sahlgrenska Academy神经科学与生理学研究所物理治疗部门。哥德堡大学以人为中心的护理中心(GPCC),Sahlgrenska Academy,哥德堡大学,哥德堡大学,瑞典