摘要 - 配备了四个独立的轮毂电动机的自主车辆,赋予了有益的设计灵活性,并使系统过度插入。扭矩分配渗透的策略决定了系统的性能,并标志着其能耗。在本文中,从车辆性能和能源消耗的角度开发了两个完整的新型控制体系结构。通过合并两个不同的控制水平来采用级联的控制策略。高级通过基于线性参数变化(LPV)系统框架中的最佳H∞控制的集中式方法来区分,以及基于问题解耦的分散方法,其中提出了使用超级扭转滑动滑动模式(STSM)控制的解决方案。两种方法均由决策层监督,以促进关键驾驶情况下的稳定目标。在低级别,使用原始扭矩分配策略实现了基于直接偏航控制(DYC)以及速度控制的稳定性控制。已经设计了一组全面的多四个多目标策略,以提议的扭矩分配配置为中心。这些策略涵盖了动态在线优化,使用高效的顺序二次编程(SQP)方法进行了专业解决,以及基于数据驱动的算法的唯一离线优化。在Simulink/Matlab和Scaner TM Studio车辆动力学模拟器之间的关节模拟中,对所提出的架构进行了测试和验证。模拟结果表明,在自动驾驶的轮驱动电动汽车的高水平和低水平上,稳定性,稳定性和能源效率都有很大的提高。
肝细胞癌(HCC)是全球与癌症相关死亡的第三大主要原因,到2040年,全球死亡人数和诊断的数量预计将增加55%以上(Marrero等人,2018年; Rumgay等人,2022年)。目前,主要治疗方法是肝切除和肝移植。然而,治疗后复发率保持较高,肝切除和肝移植后5年复发率分别为70%和35%(Xu等,2019)。近年来,对微血管侵袭(MVI)在HCC中的作用引起了显着关注。MVI定义为侵袭肿瘤细胞进入血管内皮细胞之间的空间,包括门静脉,肝动脉和淋巴管,是术后复发和HCC患者预后不良的独立危险因素(Gouw等人,2011年)。值得注意的是,对于直径小于5 cm的孤立小型HCC病变的患者,MVI的存在显着降低了无复发的生存率(RFS)和整体存活率(OS)(Sheng等,2020; Hong et al。,2021; Xiong et al。因此,迫切需要具有预后和治疗意义的更多特异性分子生物标志物。近年来单细胞RNA测序(SCRNA-SEQ)技术的快速发展彻底改变了对各种病理组织中细胞异质性的理解(Ramachandran等,2019; Kuppe等,2021)。SCRNA-SEQ导致肝癌研究中的显着发现。每个亚群在肝癌微环境中起着独特的作用。研究表明,肝癌中与肿瘤相关的巨噬细胞(TAM)与患者的预后差密切相关,并且它们在TAM的炎症反应中鉴定了关键基因,例如SLC40A1和GPNMB(Ma等,2019; Zhang等,2019)。此外,SCRNA-SEQ已用于绘制包括T细胞和树突状细胞在内的肝癌组织中的各种免疫细胞亚群。例如,LAMP3阳性树突状细胞介导免疫抑制,而TREM2-阳性TAM抑制了CD8 + T细胞的内化为肿瘤组织(Zhang等,2019; Zheng等,2017; Tan等,2023)。尽管发现了这些发现,但缺乏对肝细胞癌中恶性细胞的表达情况的全面理解,尤其是在MVI的进展过程中,缺乏,并且它们在肿瘤中的特定作用尚不清楚。本研究研究了肝细胞癌中恶性细胞的表达纤维,系统地分类了这些细胞,并详细介绍了与MVI相关的细胞异质性以及特异性恶性亚群的分子生物学特征。一种机器学习方法用于基于恶性细胞的签名基因构建预后模型,该模型不仅增强了签名基因的预后效用,而且还鉴定了先前未报告的分子,即Marcksl1。进一步的研究表明,MARCKSL1可以通过与PTN信号网络的相互作用来促进MVI的发展。目前的发现表明,Marcksl1是肝细胞癌和MVI进展的潜在治疗靶标,对于改善治疗策略和临床结果至关重要,尤其是对于MVI患者。
我们考虑使用多个移动代理将包裹从指定源集体递送到图中指定目标位置的问题。每个代理从图的某个顶点开始;它可以沿着图的边缘移动,并且可以在移动过程中从一个顶点拾起包裹并将其放在另一个顶点。但是,每个代理的能量预算有限,只能遍历长度为 B 的路径;因此,多个代理需要协作才能将包裹运送到目的地。给定图中代理的位置及其能量预算,寻找可行移动计划的问题称为协作递送问题,之前已经对其进行了研究。先前结果中的一个悬而未决的问题是,当递送必须遵循预先给定的固定路径时会发生什么。虽然这种特殊约束减少了可行解决方案的搜索空间,但我们表明寻找可行计划的问题仍然是 NP 难题(与原始问题一样)。我们考虑该问题的优化版本,即在给定代理的初始位置的情况下,要求每个代理的最佳能量预算 B,从而实现可行的交付计划。与该问题的一般版本已知结果相比,我们证明了该问题的固定路径版本存在更好的近似值(至少对于每个代理单次拾取的限制情况)。我们为有向和有向路径提供了多项式时间近似算法
“路径求和”形式主义是一种符号化操作描述量子系统的线性映射的方法,也是用于形式化验证此类系统的工具。我们在此给出了该形式主义的一组新重写规则,并表明它对于“Toffili-Hadamard”是完整的,这是量子力学最简单的近似通用片段。我们表明重写是终止的,但不是汇合的(这是片段普遍性所预期的)。我们使用路径求和和图形语言 ZH-Calculus 之间的联系来实现这一点,并展示了公理化如何转化为后者。最后,我们展示了如何丰富重写系统以达到量子计算二元片段的完整性——通过将具有二元 π 倍数的相位门添加到 Toffili-Hadamard 门集来获得——特别用于量子傅里叶变换。
•800-MA电动路径线性电池充电器 - 3.0-V至5.9V输入电压操作范围优化了电池到电池充电和USB适配器的优化 - 25-V耐受的输入电压 - 可配置的电池调节电压,可配置的电池调节电压,0.5%的精度为3.6 V至4.65 V到4.65 V toce-55 mV toce-55 ma tody-5-ma至800-ma至800-ma to – 800-ma to – 800-ma to – 800-ma to – 800-ma to – 800 ma to – 800-ma, 2.5-A discharge current to support high system loads – Configurable termination current down to 0.5 mA – Configurable NTC charging profile thresholds including JEITA support – Power cycle and advanced reset mechanisms to recover system • Power path management for powering the system and charging the battery – Regulated system voltage (SYS) ranging from 4.4 V to 4.9 V in addition to battery voltage tracking and input pass-though options – Configurable input current limit – Selectable adapter or battery power for system – Dynamic power path management optimizes charging from weak adapters • Ultra low quiescent current modes – 30-nA Shutdown mode – 3.2-μA Ship mode with button press wake – 4 μA in Battery Only mode – 45-μA input adapter Iq in Sleep mode • One push-button wake-up and reset input • Integrated fault protection – Input overvoltage protection (V IN_OVP ) – Battery undervoltage protection (V BUVLO ) – Battery short protection (BATSC) – Battery overcurrent protection (BATOCP) – Input current limit protection (ILIM) – Thermal regulation (TREG) and thermal shutdown (TSHUT) – Battery thermal fault protection (TS) – Watchdog and safety timer fault – System short protection – System overvoltage protection
唐纳德·特朗普的第二任总统任期将于 2025 年 1 月开始,全世界都在关注他的“让美国再次伟大”口号可能对美国外交政策带来哪些变化。这种担忧源于他在 2017-21 年第一任期内采取的“美国优先”外交政策方针。这一外交政策的关键方面包括以交易方式对待联盟、拒绝多边主义、反智主义、试图将美国与中国脱钩以及民粹主义驱动的反移民政策。在 2024 年的总统竞选期间,特朗普总统强调通过与中国的贸易战加强美国制造业基础,结束所谓的永久战争,并保护国家边界。1 他的立场反映了一种利用国内经济稀缺性的民粹主义经济民族主义。在外交政策方面,他采用了地缘经济视角,推行基于互惠和收缩中东和欧洲的外交政策,专注于与中国的竞争。
摘要 — 本文概述了实现低碳导向的能源转型路线图和电力系统规划战略所涉及的挑战和途径。向低碳能源转型对于缓解全球气候变化危机至关重要。然而,这种转变带来了一些技术、经济和政治挑战。本文强调了电力系统规划综合方法的重要性,该方法不仅考虑单个技术,还考虑整个能源系统(包括物理和信息系统以及市场机制)。为了实现这一目标,本文讨论了低碳能源转型的各种途径,包括将可再生能源整合到现有能源系统中、能源效率措施以及涵盖法规、标准和政策实施的市场和监管战略。此外,本文强调需要采取全面协调的能源规划方法,同时考虑到转型过程的社会经济和政治层面。此外,本文回顾了低碳导向电力系统规划建模中使用的方法,包括基于模型的方法和先进的机器学习辅助解决方案。总体而言,
基金经理主要采用自下而上的基本方法进行证券分析。该基金保持全球股票关注,主要投资于具有持续盈利增长记录的中型至大型公司的证券。该基金还投资于行业和市场交易所交易基金。该基金寻求通过使用衍生品(包括但不限于买入或卖出看跌期权和/或看涨期权组合)来管理基金投资的股票证券的下行风险。该基金采用这一策略来减少市场下跌的风险,同时认识到该基金可能无法充分受益于强劲的股票市场增长。该基金按行业进行多元化投资,通常持有 20 至 40 家发行人。该基金在全球范围内进行多元化投资,但保持美国股票偏好,目标是至少 50% 的资金配置于美国股票。该基金将使用衍生品来对冲潜在损失。本基金还将使用衍生品进行非对冲交易,包括看跌和/或看涨期权、期货、远期合约和掉期交易,以便在不直接投资某些证券的情况下获得对此类证券的投资机会,以减少货币波动对本基金的影响或为本基金的投资组合提供保护。本基金将仅使用加拿大证券监管机构允许的衍生品。
雷达系统确定目标的距离、速度和到达角 (AoA)。本研究的重点是 AoA 确定的准确性。目标反射信号的方位角或 AoA 由相控阵系统中每个接收器链信号之间的相位差决定。接收器链之间的固有相移差异是造成不准确的一个原因。因此,为了准确确定 AoA,必须在接收器电路中控制相位变化。校准相位的模拟解决方案通常使用移相器,但有源移相器耗电,无源移相器有损耗且需要很大的面积 [5]。此外,在这些频率下使用移相器实现小于一度的精度非常复杂 [6]。另一种方法是使用
生物标志物测试用于诊断,治疗,管理或监测MEDI-CAL成员的疾病或指导治疗决策。根据《福利和机构代码》第14132.09节的定义,生物标志物测试是对个人组织,血液或其他生物测量的分析,以存在生物标志物。生物标志物测试包括但不限于单分析物测试,多重小组测试和整个基因组测序。生物标志物是一种特征,可客观地测量和评估,以指示对特定治疗干预措施的正常生物学过程,致病过程或药理反应。生物标志物包括但不限于基因突变或蛋白质表达。医学上必要的生物标志物测试受其利用控制和基于证据的临床实践指南的约束。››
