本文档中的信息是根据特定实验室环境中的设备编写的。本文档中使用的所有设备均采用原始(默认)配置。如果您的网络是实时的,请确保您了解任何命令的潜在影响。
摘要:我们的研究分析了与某些无线通信功能有关的基于认证的公共密钥基础架构(PKI)的安全效应。在基于无线通信的汽车功能的情况下,本文的第一部分侧重于量化服务质量(QOS)参数的安全效应。基于此概念,本文讨论了两种情况:在第一种情况下,在通信过程中没有应用身份验证过程,在第二种情况下,通信是通过PKI身份验证确保的。这个概念使我们能够评估由与身份验证过程相关的其他计算需求引起的安全开销的安全效应。考虑到我们的研究结果,就可以在操作情况下定义要求和预期条件。
假冒产品通过破坏消费者信任,降低品牌价值甚至带来严重的安全风险,对品牌构成了严重威胁。UCODE Guard不仅提供了一种有效的方法来帮助减少市场中的假货商品数量,还可以通过确保仅将真实的零件用于汽车维修,减少假冒药品或疫苗的重大事件,甚至简单地降低召回成本,从而帮助提高安全性。
Internet为用户之间的几种形式的相互作用提供了一个开放平台。鉴于网络的开放性质,由于不良行为者利用了毫无戒心的用户,因此存在信任问题。基于密码学的系统可以为实现信任提供正确的工具。有两个广泛的密码系统类别:对称键的加密和不对称键的加密[6]。对称键的加密和解密使用相同的密钥和一对密钥(私有和公共密钥)进行加密和解密,以进行非对称键的加密。身份验证的加密(AE)允许多方以保密和完整性交换消息。用户可以验证消息创建者的真实性,并防止可以侵蚀信任的消息伪造。当今的电子交易仅部分是由于安全身份验证的加密方案的发明。我们的工作使用对称键加密原始
I.医学互联网(IOMT)是医疗设备和应用程序的收敛,可以使用网络技术连接到医疗保健信息技术系统[1]。过去几年中,IOMT的发展是由医疗保健领域中无线医疗传感器网络(WMSN)广泛使用的驱动。过去几年中,WMSN在医疗保健领域广泛使用了IOMT的发展[2]。在这样的情况下,将各种复杂的传感器设备放置在患者中,以收集和监视其生理参数,而不会损害其舒适性并将数据无线传输到医生的手持设备,例如平板电脑,智能手机和其他设备。基于这些数据,医生可以更全面地评估患者的健康状况。尽管收集了所有数据
摘要。这项工作的主要目标是构建既有承诺又是泄漏弹性的身份验证的加密(AE)。作为这种方法,我们将通用组成视为构建AE方案的众所周知的方法。Barwell等人已经分析了通用组成方案的泄漏弹性。(Asiacrypt'17),为了实施安全性,事实并非如此。我们通过对犯下安全性的通用组成范式进行单独分析来填补这一空白,从而给出正面和负面的结果:通过具体攻击,我们表明加密 - 然后是-MAC不承诺。此外,鉴于基本方案满足了我们为此目的引入的安全概念,因此我们证明了加密和MAC正在承诺。我们后来通过提供满足它们的计划来证明这些新观念。mac-然后将加入的限制更加困难,因为该标签未与密文旁边输出,因为它是针对其他两种组合方法完成的。尽管如此,我们对Mac-then-contrypt进行了详细的启发式分析,以实施安全性,这是确定的结果,这是未来工作的开放任务。我们的结果结合了一个事实,即仅加密-AC会产生泄漏 - 弹性的AE方案,表明人们无法获得通过通用组成进行投入和泄漏弹性的AE方案。作为构建承诺和泄漏弹性AE的第二种方法,我们开发了一种通用转换,该转换将任意AE方案变成实现这两种属性的方案。转换依赖于既有结合的键函数,即,很难找到导致相同输出的键输入对以及泄漏 - 弹性的伪数。
摘要第六代移动网络(6G)的目标之一是实现更大的网络覆盖范围。卫星网络可实现全球覆盖范围和空中节点,例如无人机(UAV),可以作为偏远环境中地面网络的补充。因此,6G网络逐渐发展为空气空气地面集成网络。无人机网络和卫星网络的组合是太空空气集成网络领域中的研究热点。但是,无人机网络和卫星网络的组合目前在确定性方面面临许多挑战。卫星网络中大型传播延迟和不稳定的通信链接的特征使它们容易受到各种攻击的影响,包括窃听,驯服和模仿。同时,对无人机网络的现有研究主要集中于无人机的网络认证机制,这些机制不适合在太空空气集成方案中适用于资源约束节点。因此,基于椭圆曲线公共密钥密码学和Chebyshev多项式,我们在空间空气集成方案中为卫星节点和无人机节点提供了安全的网络验证方案。安全性分析表明,我们的计划具有诸如相互认证,密钥协议,身份匿名,无链接,完美前进的安全性以及针对各种协议攻击的电阻等安全属性等安全属性。绩效分析还表明,就信号,带宽和计算开销而言,我们计划的某些优点比现有方案的某些优势。
零信任方法消除了定义的公司周边内信任网络的概念,而是将数据本身作为起点。这种以数据为中心的方法通过不断监视谁在访问谁数据来创建安全性。常用的零信任概念包括确定数据的敏感性,评估风险,建立访问规则并执行这些。一种方法是使用软件定义的序列。这意味着根据需要知道的原则建立网络访问和连接。任何想要访问网络中的应用程序或资源的人都可以在成功的身份后仅用于此应用程序或资源,并且可以使用它,而无需看到网络的其余部分。换句话说,访问管理从网络周围转移到资源或应用程序。
过去十年,随着我们迈向按需提供服务和数据的数字化未来,医疗保健行业面临着各种挑战。互联设备、用户、数据和工作环境的系统被称为医疗保健物联网 (IoHT)。过去十年,IoHT 设备作为具有强大可扩展性的经济高效的解决方案应运而生,以解决有限资源的限制问题。这些设备满足了物理交互之外的远程医疗保健服务需求。然而,IoHT 安全性经常被忽视,因为这些设备被快速部署和配置为满足高度饱和的行业需求的解决方案。在 COVID-19 大流行期间,研究表明,网络犯罪分子正在利用医疗保健行业,数据泄露通过身份验证漏洞瞄准用户凭据。根据 IBM 报告,密码使用和管理不当以及 IoHT 中缺乏多因素身份验证安全态势导致数百万美元的损失。因此,医疗保健身份验证安全转向自适应多因素身份验证 (AMFA) 以取代传统的身份验证方法非常重要。我们发现,缺乏针对 IoHT 数据架构的数据模型分类法,以提高 AMFA 的可行性。该观点侧重于在总结 IoHT 数据主要组成部分的数据模型的理论框架中识别关键的网络安全挑战。这些数据将以适合现代 IoHT 环境中的医疗保健用户以及应对 COVID-19 大流行的方式使用。为了建立数据分类法,我们对最近的 IoHT 论文进行了审查,以讨论 IoHT 数据管理和在下一代身份验证系统中使用的相关工作。审查了与远程身份验证和用户管理系统的问题陈述相关的 IoHT 身份验证数据技术的报告、期刊文章、会议和白皮书。仅包括过去十年(2012-2022 年)用英文撰写的出版物,以确定当前医疗保健实践及其对 IoHT 设备的管理中的关键问题。我们从数据管理和敏感性的角度讨论了 IoHT 架构的组件,以确保所有用户的隐私。数据模型满足了 IoHT 用户、环境和设备对医疗保健领域 AMFA 自动化的安全要求。我们发现,在医疗保健身份验证中,发生的重大威胁与数据泄露有关,这是由于 IoHT 设备的安全选项薄弱和用户配置不佳造成的。本文讨论了 IoHT 数据架构的安全要求以及确定的针对医疗保健设备、数据及其各自攻击的有效网络安全方法。数据分类法提供了更好的理解、解决方案和并改进远程工作环境中的用户身份验证以确保安全。