根据具身理论(包括具身、嵌入、扩展、演绎、情境和扎根认知方法),语言表征与我们与周围世界的互动有着内在联系,这反映在语言处理和学习过程中的特定大脑特征中。从具身理论与非模态理论的原始竞争开始,这篇共识论文讨论了一系列精心挑选的问题,旨在确定运动和感知过程何时以及如何参与语言过程,而不是是否参与。我们的研究领域非常广泛,从具身语义的神经生理特征(例如事件相关电位和场以及神经振荡)到语义处理和语义启动对具体和抽象词的影响,到第一和第二语言学习,最后,使用虚拟现实来检查具身语义。我们的共同目标是更好地理解运动和感知过程在语言理解和学习所代表的语言表征中的作用。我们达成共识,基于该领域开展的开创性研究,未来的发展方向是通过承认具体和情境语言和语义过程的多模态性、多维性、灵活性和特质来提高研究结果的外部有效性。
语言处理受感觉运动体验的影响。在这里,我们回顾了语言处理中体现和扎根影响的行为证据,这些影响涵盖六个语言粒度级别。我们研究 (a) 子词特征,讨论扎根对图像性(词形和含义之间的系统关联)的影响;(b) 单词,讨论模拟颜色、感觉模态和空间位置的边界条件和概括;(c) 句子,讨论动作方向模拟的边界条件和应用;(d) 文本,讨论模拟教学如何提高初学者的理解力;(e) 对话,讨论多模态线索如何改善轮流和对齐;(f) 文本语料库,讨论分布式语义模型如何揭示扎根和体现知识在文本中的编码方式。这些方法正在汇聚成令人信服的语言心理学解释,但与此同时,对体现方法和特定实验范式也提出了重要的批评。最可靠的前进之路需要采用多种科学方法。通过提供互补证据,结合不同粒度级别的多种方法可以帮助我们更全面地了解语言处理中体现和基础的作用。
远程机器人技术旨在将人类的操作技能和灵巧性在任意距离和任意规模上转移到远程工作场所。透明的远程机器人系统可以实现自然而直观的交互。我们假设机器人系统的具身化(包括三个子组件:所有权、代理和自我定位)可实现最佳的感知透明度并提高任务性能。但是,这尚未得到直接研究。我们根据四个前提进行推理,并从文献中提出支持每个前提的发现:(1)大脑可以具身化非身体物体(例如,机器人手),(2)具身化可以通过介导的感觉运动交互来引发,(3)具身化对机器人系统和操作员身体之间的不一致具有鲁棒性,以及(4)具身化与灵巧的任务性能呈正相关。我们使用预测编码理论作为框架来解释和讨论文献中报告的结果。先前的大量研究表明,通过介导的感觉运动交互,可以在各种虚拟和真实的体外物体(包括假肢、化身和机器人)上诱导化身。此外,非人类形态也可以实现化身,包括细长的手臂和尾巴。根据预测编码理论,没有任何一种感觉方式对于建立所有权至关重要,多感官信号的差异不一定会导致化身的丧失。然而,多感官同步或视觉相似性方面的巨大差异可能会阻碍化身的发生。文献对化身和(灵巧的)任务表现之间的联系提供了较少的广泛支持。然而,用假手收集的数据确实表明了正相关性。我们得出结论,所有四个前提都得到了文献中的直接或间接证据的支持,这表明远程操纵器的化身可能会提高遥控机器人的灵巧表现。这值得进一步对遥控机器人中的化身进行实施测试。我们制定了第一套在远程机器人技术中应用具体化的指导方针,并确定了一些重要的研究课题。
(1)(Kokuken)日本科学技术局研究与发展战略中心,“战略建议:每个人的量子计算机”,2018年。 https:// wwwjst.go.jp/crds/pdf/2018/sp/crds-fy2018-sp-04.pdf(2)p.w.Shor,“用于量子计算的算法:离散日志和保理”,Proc第35届IEEE计算机科学序言研讨会,第124-134页,1994年。(3)L.K.Grover,“用于数据库搜索的快速量子机械算法”,第28 ACM计算理论座谈会论文集,第212-219页,1996年。(4)N。Kunihiro,“代理量计算机的计算时间的精确分析”,IEice Trans基础,第88-A卷,第105–111页,2005年。(5)M.A。nielsen和I.L.chuang,量子计算和量子信息,剑桥大学出版社,2000年。(6)A。Peruzzo,J。McClean,P。Shadbolt,M.-H周,P.J。Love,A。Aspuru-Guzik和J.L.O'Brien,“光子量子处理器上的变异特征值求解器”,《自然通信》,第5卷,第1期,2014年7月,第4213页(7)to奥利T.可逆计算,在:de bakker J.,van leeuwen J.(eds)自动机,语言和程序 - iCalp 1980,计算机Sci-Ence中的讲义,第85卷,Springer,柏林(8)Arxiv e-Prints,Quant-PH/9902 062,1999年2月。(9)K。Iwama,S。Yamashita和Y. Kambayashi,“设计基于CNOT的量子CUITS的跨形成规则”,设计自动化会议,第419-429-2002页,2002年。(10)Z. Sasanian和D.M.(12)M。Soeken,M。Roetteler,N。Wiebe和G.D. Micheli,“基于LUT的层次可逆逻辑Synthe-Sis”,IEEE TransMiller,“可逆和Quan-Tum电路优化:一种功能性方法”,《可使用的计算》第4个国际研讨会(RC 2012),第112-124页,2013年。((11)A。Mishchenko和M. Perkowski,“快速的启发式启发式最小化 - 独家及产品或产品”,第五届国际式Reed-Muller Workshop,pp.242–250,2001。计算。集成。电路系统,第38卷,第9期,第1675–1688页,2019年。((13)E。Souma和S. Yamashita,“同时分解许多MPMCT大门时,减少T计数”,第50届国际多重逻辑国际研讨会(IS- MVL 2020),第22-22-27页,11月2020年,((14)X. Zhou,D.W。 Leung和I.L.Chuang,“量子逻辑门结构的方法论”,物理。 修订版 A,第62卷,052316,2000年10月。 ((15)A。Barenco,C.H。 Bennett,R。Cleve,D.P。 Divincenzo,Chuang,“量子逻辑门结构的方法论”,物理。修订版A,第62卷,052316,2000年10月。((15)A。Barenco,C.H。Bennett,R。Cleve,D.P。 Divincenzo,Bennett,R。Cleve,D.P。Divincenzo,
基于运动想象的脑机接口 (MI-BCI) 已被提议作为一种中风康复手段,它与虚拟现实相结合,可以将基于游戏的互动引入康复中。然而,MI-BCI 的控制可能难以获得,用户可能会面临糟糕的表现,这会让他们感到沮丧,并可能影响他们使用该技术的积极性。通过增加用户对系统的代理感,可以减少积极性的下降。本研究的目的是了解虚拟现实中描绘的手的化身(所有权)是否可以增强代理感,从而减少 MI-BCI 任务中的挫败感。22 名健康参与者参加了一项受试者内研究,在两种不同的化身体验中比较了他们的代理感:1) 化身手(与身体),或 2) 抽象块。两种表征都以相似的运动闭合以实现空间一致性,并因此弹出气球。手/块通过在线 MI-BCI 控制。每种情况都包括 30 次 MI 激活化身手/块的试验。在每种情况之后,一份问卷调查了参与者的自主感、所有权和挫败感。之后,进行了一次半结构化访谈,参与者详细说明了他们的评分。这两种情况都支持相似水平的 MI-BCI 性能。观察到所有权和自主性之间的显著相关性(r = 0.47,p = 0.001)。正如预期的那样,虚拟手比积木产生更高的所有权。在控制性能时,所有权增加了自主感。总之,基于 BCI 的康复应用程序的设计者可以利用拟人化虚拟形象来对训练过的肢体进行视觉映射,以提高所有权。虽然不能减少挫败感,但只要 BCI 性能足够好,所有权就可以提高感知到的自主性。在未来的研究中,应该在中风患者中验证这些结果,因为他们对自主性和所有权的感知可能与健全用户不同。
根据联邦航空管理局的研究,仅美国航空公司每年就燃烧 162 亿加仑的航空燃料,导致美国空气污染的 3% 以上,航空业贡献了全球空气污染的 1% 以上。与其他污染源相比,这些数字可能看起来微不足道,但航空业仅占世界贸易量的 0.5%,而全球能源消耗量为 2.2%。目前电池和电动机的进步并不能在不久的将来取代燃气涡轮发动机,特别是对于远程飞机而言。本文介绍了一种 BWB 飞机的概念设计,该飞机可载客 160 人,航程 9200 公里,巡航速度为 0.77 马赫数,可通过 FAR 25 认证。设计非常规配置的方法包括传统的飞机设计方法和新颖的方法。在任何航程方程中,升阻比都起着重要作用。对于 BWB 飞机来说,这个比率相当高,而且随着发动机效率的提高,每位乘客每公里的燃油消耗量可以大幅降低。与具有类似载客量和任务特征的传统飞机相比,BWB 飞机的一体式设计提供了较低的空重。
摘要 — 从“互联网人工智能”时代到“具身人工智能”时代,出现了一种新兴的范式转变,人工智能算法和代理不再从主要来自互联网的图像、视频或文本数据集中学习。相反,他们通过与环境的互动从类似于人类的自我中心感知中进行学习。因此,对具身人工智能模拟器的需求大幅增长,以支持各种具身人工智能研究任务。对具身人工智能日益增长的兴趣有利于对通用人工智能 (AGI) 的更大追求,但目前还没有对这一领域的当代和全面的调查。本文旨在为具身人工智能领域提供百科全书式的调查,从其模拟器到其研究。通过评估我们提出的七个特征的九个当前具象人工智能模拟器,本文旨在了解模拟器在具象人工智能研究中的用途及其局限性。最后,本文调查了具象人工智能的三个主要研究任务——视觉探索、视觉导航和具象问答 (QA),涵盖了最先进的方法、评估指标和数据集。最后,通过调查该领域发现的新见解,本文将为任务模拟器的选择提供建议,并为该领域的未来方向提供建议。
情境化具身智能体如何利用知识实现目标是自然和人工智能的经典问题。生物体如何利用其神经系统实现这一目标是具身认知神经理论面临的核心挑战。为了构建这一挑战,我们借用了塞尔对意向性的分析中的术语,即其两个契合方向和六种心理模式(感知、记忆、信念、行动中的意图、先前意图、愿望)。我们假设意向状态由神经激活模式实例化,而神经激活模式由神经交互稳定。动态不稳定性为启动和终止意向状态提供了神经机制,对于组织意向状态序列至关重要。概念节点网络所表示的信念是自主学习的,并根据期望的结果被激活。意向智能体的神经动力学原理在一个玩具场景中得到演示,其中机器人智能体探索环境并根据学习到的颜色变换规则将物体涂成所需的颜色。
w w w .m i s a w a .a f .m i l 第 35 战斗机联队 (DSN) 电话:315-226-3075 传真:315-226-9342 公共事务办公室 (COM) 电话:0176-53-5181,分机。226-3075 日本三泽空军基地 96319-5009 (COM) 传真:0176-53-5181,分机。226-9342
