空气寻找电动推进(ASEP)是一个改变游戏规则的概念,它通过提供定期重新升高以维持轨道高度,从而延长了非常低的地球轨道(VLEO)卫星的寿命。ASEP概念是由太阳能阵列驱动的太空车辆组成的,该航天车用电推进(EP)增强,同时利用环境空气作为推进剂。在1960年代首次提议,ASEP在过去十年中吸引了兴趣和研究资金的增加。ASEP技术旨在维持较低的轨道高度,这可以减少通信卫星的延迟或增加遥感卫星的分辨率。此外,在其燃油箱中存放多余气体的ASEP太空车辆可以用作可重复使用的空间拖船,从而减少了直接将卫星直接插入其最终轨道的高功率化学助推器的需求。
对Starlink卫星的观察,没有变暗的缓解作用,表明它们在4-5范围内具有典型的明显亮度(Mallama,2020a; Otarola等,2020),并且可以通过望远镜甚至未援助的人眼可见。对OneWeb卫星的观察表现出典型的亮度范围比6-7级,但它们位于更高的轨道高度,约1200 km(Mallama,2020c,2020c; Zamora等,2020)。对Darksat和Visorsat Starlink卫星的观察有限,这表明修改后的设计中实施的亮度还原缓解措施有效,但不能在550 km的轨道高度下实现SATCON1亮度的7th V级亮度建议(请参阅E.G.,Tyson等,Tyson等,2020; Tregloan; Tregloan-2020;在多个光谱带中观察到星链卫星进一步表明,卫星在较长的波长下更加明亮,而近红外的近红外缓解策略实验的功效降低(Tregloan-Reed等人,2021年; D&QS报告)。
本文研究了卫星的在轨寿命。研究涵盖了不同的轨道状态、通用任务分析工具 (GMAT) 模拟和数据,以确认低地球轨道因素对卫星衰减的影响。太阳活动是卫星寿命的一个关键决定因素,影响低地球轨道 (LEO) 卫星所受的大气阻力。研究证实了阻力因素(横截面积和轨道高度)与卫星寿命之间的相关性,强调需要优化这些因素以延长在轨运行以及随后快速脱轨。本研究旨在为更细致地了解大气阻力因素和卫星动力学做出贡献。简介卫星已成为现代世界的重要组成部分,提供从通信和导航到天气预报和地球观测等广泛的关键服务。然而,卫星并不是太空中的永久固定装置。特别是在低地球轨道,卫星可能因大气阻力、潮汐扰动和太阳效应而逐渐失去轨道高度,并最终重新进入大气层并烧毁。因此,卫星在轨寿命是其设计、运行和任务规划的关键因素。
这些航天器的衰减速度取决于几个因素。特别是,轨道分配和弹道系数对遵守法规的能力起着根本性的作用。对轨道碎片积累的估计表明,直径为 1 – 10 厘米的颗粒超过 900,000 个,直径 >10 厘米的碎片超过 34,000 个,在地球静止赤道和低地球轨道高度之间的轨道上运行 (2)。在已进入轨道的 11,370 颗卫星中,60% 仍在轨道上,只有 35% 仍在运行。截至 2021 年 4 月,估计所有在轨空间碎片的总质量为 9,300 公吨 (2)。图 13.1 表示了地球周围的碎片。NASA 轨道碎片计划以及机构间空间碎片协调委员会 (IADC) 的目标是限制空间碎片的产生。他们要求所有航天器必须在规定时间内脱离轨道或进入墓地轨道安全储存 (3)。小型航天器任务通常停留在低地球轨道,因为这是一个更容易进入且成本更低的轨道。通过几家商业发射提供商,有很多共乘机会进入低地球轨道。靠近地球可以放宽航天器质量、功率和推进限制。此外,对于低于 1000 公里的高度,低地球轨道的辐射环境相对温和。在国际空间站 (ISS) 高度(400 公里)或附近发射的小型航天器会在 25 年内自然衰变。然而,在 800 公里以上的轨道高度,由于大气密度的不确定性和弹道系数的差异,无法保证小型航天器会在 25 年内自然衰变,如图 13.2 所示。
摘要 商业路线图是一种高级战略管理工具,用于规划发展新产业的行动。它可作为以更具操作性的方式规划和预测技术、市场和产品发展的指南。确切地说,本文的商业路线图强调了欧盟 (EU) 太空生态系统在低地球轨道 (LEO)(轨道高度为 450 至 2000 公里)和极低地球轨道 (VLEO)(轨道高度为 150 至 450 公里)方面将采取的主要行动。一方面,欧盟必须(1)发展工业和技术太空能力;(2)继续将公共资金投入欧洲计划,开发进入太空的新运载工具概念;(3)改进测试、演示和探索,以加快技术就绪水平(TRL)的发展;(4)促进创业和冒险文化;(5)利用私人投资推动先进太空技术的发展,吸引人才,促进公私企业之间的合作,并为新太空中小企业提供资金。另一方面,欧盟还应加强与欧洲航天局(ESA)的关系,以培养其太空能力,并在中期(5-10年)成为进入太空市场的有竞争力的参与者。实施这些行动将有助于欧盟提高其国际地位,并使技术适应新太空需求的需求和要求,在运营的前10-15年内为欧盟经济筹集约405亿欧元,平均杠杆率(LF)为4。
GPS卫星系统由24颗卫星组成,卫星高度约为2万公里,以6个等间隔轨道分布。轨道平面相对于赤道夹角为55度,每个轨道平面有4颗卫星。卫星的轨道平面近似圆形,公转周期约为11小时58分。这样的卫星分布可以保证在全球任何地点、任何时刻,都有至少4颗卫星可供观测。同样,格洛纳斯系统也将部署24颗卫星。格洛纳斯卫星位于三个轨道平面上,间隔120度,轨道高度约19000公里,轨道倾角约65度,公转周期为12小时。
奥地利和中国的研究人员在轨道上找到了解决方案:2016 年发射升空的“墨子号”卫星,为他们提供了一个科学站,该站可在 94 分钟内绕地球运行,轨道高度约为 500 公里。该卫星配备了光子源和探测器,因此能够产生和传输光子。在实验中,“墨子号”向地面站发送了一些所谓的光子,这些光子以随机、不可预测的方向振荡。因此,轨道上的发射器和地球表面的接收器会收到一个随机生成的唯一数字序列,由零和一组成 - 量子密钥。如果在轨道和地球之间的交换过程中发生拦截尝试,接收方会注意到这一点。原因是:每次测量都会改变粒子的量子态。因此,任何“黑客”都会立即被抓获。
CISLUNAR政权可能被认为是从地球同步地球轨道(Geo)邻里(靠近固定轨道高度)到达地球月亮卢纳(Luna)的Lagrange点的区域,但该政权中的一些关键基因座将比其他地区更为居高。近线性光环轨道(NRHOS)和LUNA本身附近提供了相对稳定性,两个对齐的Lagrange点(L1和L2)也提供了相对的稳定性,L4和L5点提供了长期的轨道稳定性以及相对简单的对太阳能的访问。这些基因座,所有这些基因座都是月球网关站或长期科学安置的可能位置,以及将这些基因座连接的所有过境路线和通信接力站点成功地扩展到人类经济活动到太空中的近期未来的关键兴趣。