转座元素(TES)占我们基因组的约50%,但是对TES如何影响基因组进化的知识仍然不完整。利用Encode4数据,我们提供了迄今为止对监管基因组贡献的最全面研究。我们发现236,181(〜25%)人类候选元素(CCRES)是te衍生的,自人小鼠裂口以来,人群分裂以来,有超过90%的血统特异性,占血统特异性ccr的8-36%。除了罪恶之外,TES中与CCRE相关的转录因子(TF)基序比偶然的预期源自祖先TE序列。我们表明,TE可以在其集成站点附近采用类似的监管活动。自人机差异以来,TE在30个检查的TF中贡献了3 - 56%的TF结合位点周转事件。最后,就MPRA活性和GWAS变体富集而言,TE衍生的CCR与非TE CCR相似。总的来说,我们的结果证实了TE在塑造人类调节基因组中发挥重要作用的观念。
图1:与光子相比,质子辐射的类器官显示出更高的自我更新能力和IFN-β响应。(a)自我更新测定法的示意图。在第5天进行辐照,并在第18天的自我更新后计算了按器官形成效率(Ofe%)的定量。(b)自我更新后培养中器官的代表性图像。比例尺,100 µm。(c)相对于对照样品的折叠变化(FC)所示的器官定量。n = 9动物/病情。(d)大量RNA-Seq分析的示意图。RNA。(e)前10名重要(p.adj。<0.05)在辐照后2和6天,质子与控制和光子对照中的生物过程。(f)显着(p <0.05)ISG的基因表达水平从辐照后6天的类器官的大量RNA-seq数据推断出来。数据相对于对照样品显示为log 2 FC。(g)辐照后6天对ISG的RT-QPCR分析。数据相对于对照样品显示为FC。n = 4个动物/状况。(h)辐照后6天后对类器官的STAT1,PSTAT1和GAPDH的Western印迹分析。(i)STAT1的蛋白质印迹定量(图1i和S2e)。STAT1蛋白水平的GAPDH标准化。 数据相对于对照样品显示为FC。 n = 6只动物/状况。 数据是平均值±s.e.m。 学生的T检验和双向ANOVA。 *p <0.05,** p <0.01。STAT1蛋白水平的GAPDH标准化。数据相对于对照样品显示为FC。n = 6只动物/状况。数据是平均值±s.e.m。学生的T检验和双向ANOVA。*p <0.05,** p <0.01。另请参见图S1和S2。
(> 11 百万年前),其特点是 Athila 和 CRM 元素贡献相等(模式:分别为 467 和 353 TE)。这些发现表明这些物种的着丝粒周围相对稳定,较旧的 CRM 副本随后被 Athila 元素所取代。相比之下,B. prealpina 和 B. varia 显示出更高的 CRM 序列周转率,许多旧的 CRM 副本被较新的副本所取代。在分布分散的 Athila 家族中也观察到了类似的模式。最后,我们扩展了
在细菌中,天然转座子动员可以驱动自适应基因组重排。在这里,我们以这种能力为基础,并开发了一个可诱导的,自传播的转座子平台,用于整个基因组诱变和细菌中基因网络的动态重新布线。我们首先使用该平台研究转座子功能对平行大肠杆菌种群进化对各种碳源利用和抗生素耐药性表型的影响。然后,我们开发了一个模块化,组合装配管道,用于用合成或内源基因调节元素(例如,诱导型启动子)以及DNA条形码的转座子功能化。我们可以在交替的碳源上进行平行的发展,并证明了诱导性,多基因表型的出现,并且可以持续地跟踪条形码的转座子的易于性,以识别基因网络的致病性重新旋转。这项工作建立了一个合成的转座子平台,可用于优化工业和治疗应用的菌株,例如,通过重新布置基因网络来改善各种原料的增长,并有助于解决有关已雕刻出了极端基因网络的动态过程的基本问题。
DNA甲基化通过募集Arabi-Dopsis MBD5/6复合物的部分介导了转座元素和基因的沉默,其中包含甲基-CPG结合结构域(MBD)蛋白MBD5和MBD6,以及MBD6,以及J-Domain含有J-Domain含有蛋白质Silenzio(SLN)。在这里,我们表征了另外两个复杂成员:含有蛋白ACD15和ACD21的α-晶体结构域(ACD)。我们表明,它们对于基因上是必要的,桥接到复合物,并促进异染色质内MBD5/6复合物的高阶多聚化。这些复合物也是高度动态的,MBD5/6复合物的迁移率由SLN活性调节。使用DCAS9系统,我们证明将ACD束缚在异染色质外部的异位部位上可以将MBD5/6复合物的大量积累带入大型核体。这些结果表明,ACD15和ACD21是基因分解MBD5/6复合物的关键组成部分,并作用着驱动CG甲基化(MECG)位点的高阶,动态组件的形成。
图1:(a)描述用于检测非参考TE 97插入的读取图信息的图表。简短读取与参考基因组对齐,并读取98,其中一个在对参考基因组中读取,而另一个读取为TE序列99(不一致的映射读取)或读取一对在参考和TE 100序列之间分配的,而TE 100序列(分裂读数)被量化。(b)Teforest管道的概述。输入和输出101个文件显示在椭圆形中,管道中的重要分支点显示在钻石中,管道的102个计算步骤显示在矩形中。(c)IGV中显示的TE插入周围的103个对齐模式的示例。将映射到基因组中其他地方的TE序列104中以颜色显示。105
50年前,芭芭拉·麦克林托克(Barbara McClintock)在玉米中发现了可转座的元素时,它们被视为好奇心 - 现在,它们可能是所有真核基因组中最丰富的成分。因此,它们构成了基因组测序项目的绝大部分产出。许多新信息的利用能力促进了他们的分析和与宿主互动的研究。除了发现可转移元件外,麦克林托克还发现了三种元素可以改变遗传信息的方式:通过通过元素介导的角色重排来重组基因组;通过插入基因及其周围,并在此过程中产生新等位基因;并通过将其表观遗传标记施加在侧面的香肠DNA上。在本书的背景下,关于转座元素隐含的是,它们在基因组中的存在和非凡的丰度促进了无数改变基因组的事件。通过介绍最新的案例研究来说明三种作用模式中的每一个,本章使读者了解可转座元素活性对宿主基因表达和基因组进化的分子后果。
转座元素(TES)是流动遗传元素,平均占哺乳动物基因组的45%。它们在基因组中的存在和活性代表了遗传变异性的主要来源。这是基因组进化的重要驱动力,但TE也可以对其宿主产生有害影响。越来越多的研究集中在TE在生理和病理背景下的大脑中的作用。在大脑中,它们的活性被认为对神经元可塑性很重要。在神经系统和年龄相关的疾病中,TE的异常活性可能导致疾病病因,尽管这尚不清楚。 在提供了转座元素及其与宿主的相互作用的全面概述之后,本综述总结了对大脑中TE活动的当前理解,在衰老过程中以及在神经和年龄相关的情况下。在神经系统和年龄相关的疾病中,TE的异常活性可能导致疾病病因,尽管这尚不清楚。在提供了转座元素及其与宿主的相互作用的全面概述之后,本综述总结了对大脑中TE活动的当前理解,在衰老过程中以及在神经和年龄相关的情况下。
尽管核糖体 DNA 和转座因子都是基因组的显著特征,但乍一看,它们都是没有太多共同点的遗传因子:核糖体 DNA 主要被视为管家基因,支持所有主要基因组功能,而转座因子通常被描绘成自私和破坏性的。这些对立的特征也反映在其他属性中:串联组织(核糖体 DNA)与分散组织(转座因子);协同进化(核糖体 DNA)与多样化进化(转座因子);延长基因组稳定性的活动(核糖体 DNA)与缩短基因组稳定性的活动(转座因子)。回顾已报道的核糖体 DNA-转座因子相互作用的相关实例,我们注意到两种重复类型至少具有四个结构和功能特征:(1)它们是在进化时间尺度上塑造基因组的重复 DNA,(2)它们交换结构基序并可以进入共同进化过程,(3)它们是严格控制的基因组应激传感器,在衰老/老化中发挥关键作用,以及(4)它们具有共同的表观遗传标记,例如 DNA 甲基化和组蛋白修饰。在这里,我们概述了核糖体 DNA 和转座因子的结构、功能和进化特征,讨论了它们的作用和相互作用,并强调了我们在理解核糖体 DNA-转座因子关联方面的趋势和未来方向。
Miriam Merenciano 1,2,†,*, Laura Aguilera 1 和 Josefa González 1,3,** 1 进化生物学研究所 (CSIC-Universitat Pompeu Fabra),08003 巴塞罗那,西班牙。† 现地址:生物计量与进化生物学实验室 (LBBE, Université Claude Bernard Lyon 1),60100 Villeurbanne,法国。2 技术联系人 3 主要联系人 *通讯地址:miriam.merenciano@univ-lyon1.fr **通讯地址:josefa.gonzalez@csic.es 摘要 该方案使用两步 CRISPR-Cas9 同源定向修复在果蝇自然种群中精确删除转座因子 (TE)。在第一步中,用荧光标记物代替 TE,而在第二个 CRISPR-Cas9 步骤中,荧光标记物被移除以避免引入的标记序列可能产生的影响。因此,这个两步方案可以精确删除任何基因组区域(此处以 TE 为例),同时便于在自然群体中筛选阳性 CRISPR-Cas9 事件,而不会改变其遗传背景。有关此方案的使用和执行的完整详细信息,请参阅(Merenciano & Gonzalez,2023 年)。