用于转座酶可访问的染色质测序(ATAC-SEQ)的测定法用于理解和绘制细胞中DNA的表观遗传景观。组蛋白和其他蛋白质包装,并通过开放式(白染色质)或封闭(异染色质)构象调节DNA。可以通过ATAC-SEQ评估可及性的变化,并进行比较,以绘制疾病进展,药物治疗或其他实验条件期间的基因组位置和相关基因的变化。将ATAC-SEQ数据与转录组学数据配对可以增强并揭示细胞表型受表观遗传系统调节的新型机制。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2023年3月21日发布。 https://doi.org/10.1101/2023.03.18.533263 doi:Biorxiv Preprint
共轭(可自以为是),因为它们为自己的共轭转移和动员基因(TRA,TRB,VIR,PIL,PIL,FIN)编码,因为它们缺乏
3美国华盛顿州西雅图市医学院基因组科学系4表观遗传学和染色质动力学,实验医学科学系,Wallenberg Neuroscience Center和Lund Stem Cell Center,BMC B11,Lund University,Lund University,221 84 Lund,Sweden,瑞典。5 cambridge大学医院NHS基金会信托基金会临床神经科学系,剑桥大学6临床神经科学系和惠康 - 剑桥干细胞研究所,剑桥大学22184,伦敦,瑞典8号临床科学系Lund,伦敦大学病理科,瑞典9霍华德·休斯医学院,华盛顿大学,华盛顿州西雅图市,华盛顿州西雅图市,美国华盛顿大学
Miriam Merenciano 1,2,†,*, Laura Aguilera 1 和 Josefa González 1,3,** 1 进化生物学研究所 (CSIC-Universitat Pompeu Fabra),08003 巴塞罗那,西班牙。† 现地址:生物计量与进化生物学实验室 (LBBE, Université Claude Bernard Lyon 1),60100 Villeurbanne,法国。2 技术联系人 3 主要联系人 *通讯地址:miriam.merenciano@univ-lyon1.fr **通讯地址:josefa.gonzalez@csic.es 摘要 该方案使用两步 CRISPR-Cas9 同源定向修复在果蝇自然种群中精确删除转座因子 (TE)。在第一步中,用荧光标记物代替 TE,而在第二个 CRISPR-Cas9 步骤中,荧光标记物被移除以避免引入的标记序列可能产生的影响。因此,这个两步方案可以精确删除任何基因组区域(此处以 TE 为例),同时便于在自然群体中筛选阳性 CRISPR-Cas9 事件,而不会改变其遗传背景。有关此方案的使用和执行的完整详细信息,请参阅(Merenciano & Gonzalez,2023 年)。
该部应指定为联系点,应投资者的要求,该联系点在整个许可过程中提供指导。hrote与部门,机构以及传输和分销系统运营商以及负责物理计划和建设的部的合作,应制定一份手册作为指南,以提供有关从可再生能源获得生产设施的许可的完整信息。手册包含:•通过管理电力市场领域的特殊法规,管理物理规划和建筑领域的法规,管理与适当的行政层面连接的法规等法规的现有简化和加速程序的描述。•描述授权程序的描述,包括通知程序,分散设备,以及从可再生资源生产和存储能源•可再生能源设备和系统将满足现有的技术规格8
高活性 piggyBac 转座酶可促进小基因和大基因稳定整合到目标基因组中。该载体不可再生,不能在细菌中繁殖。SPB-100 – 改进的超级 piggyBac 转座酶 mRNA。序列已进行密码子优化(与 SPB-003 相比),以提供更好的 mRNA 稳定性和哺乳动物系统中的蛋白质表达。piggyBac 转座酶 mRNA 适用于无法有效转染载体 DNA 的细胞。SPB-200 – 良好制造级超级 piggyBac 转座酶 mRNA。序列已进行密码子优化,以提供更好的 mRNA 稳定性和哺乳动物系统中的蛋白质表达。piggyBac 转座酶 mRNA 适用于无法有效转染载体 DNA 的细胞。它非常适合将细胞系用于下游制造的应用,即需要 GMP 起始材料的研究和主细胞库。
CRISPR相关的TN7转座子(铸造)共同OPT CAS基因用于RNA引导的转座。在基因组数据库中极为罕见。最近的调查报道了类似TN7样的转座子,该座子选择了I型I-F,I-B和V-K CRISPR效应子。在这里,我们通过对元基因组数据库的生物信息学搜索扩展了报告的铸造系统的多样性。我们发现了所有已知铸件的体系结构,包括级联效应器的布置,目标归巢方式和最小V-K系统。我们还描述了选择了I型I-C和IV型CRISPR-CAS系统的铸造家族。我们对非TN7施放的搜索确定了包括核酸酶死亡CAS12的候选者。这些系统阐明了CRISPR系统如何与转型共同发展并扩展可编程基因编辑工具包。
转座在重塑所有生物体的基因组中起着关键作用 1 。IS200/IS605 和 IS607 家族 2 的插入序列是最简单的移动遗传元件之一,仅包含其转座及其调控所需的基因。这些元件编码 tnpA 转座酶,这对于动员至关重要,并且通常携带辅助 tnpB 基因,而该基因对于转座而言并非必需。尽管 TnpA 在 IS200/IS605 转座子动员中的作用已得到充分证实,但 TnpB 的功能仍然很大程度上未知。有人提出 TnpB 在转座调控中发挥作用,尽管尚未确定相关机制 3–5 。生物信息学分析表明 TnpB 可能是 CRISPR–Cas9/Cas12 核酸酶的前身 6–8 。然而,尚未发现 TnpB 具有任何生化活性。我们在此表明,耐辐射奇球菌 ISDra2 的 TnpB 是一种 RNA 引导的核酸酶,受来自转座子右端元件的 RNA 引导,切割 5′-TTGAT 转座子相关基序旁的 DNA。我们还表明,TnpB 可以重新编程以切割人类细胞中的 DNA 靶位。总之,这项研究通过强调 TnpB 在转座中的作用扩展了我们对转座机制的理解,通过实验证实了 TnpB 是 CRISPR-Cas 核酸酶的功能性前体,并将 TnpB 确立为基因组编辑新系统的原型。
ISCB蛋白是在IS200/IS605转座子的不同家族中编码的推定核酸酶,可能是RNA引导的核酸内切酶Cas9的祖先,但是ISCB的功能及其与任何RNA的相互作用仍然没有特征。使用进化分析,RNA测序和生化实验,我们从IS200/IS605转座子中重建了CRISPR-CAS9系统的演变。我们发现ISCB使用单个非编码RNA进行双链DNA的RNA引导的切割,并且可以利用人类细胞中的基因组编辑。我们还展示了TNPB的RNA引导的核酸酶活性,另一种IS200/IS605转座子编码的蛋白质以及Cas12核酸内切核酸酶的祖先。这项工作揭示了一类广泛的转座子编码的RNA引导的核酸酶,我们将其命名为Omega(强制性移动元件 - 引导活动),具有强大的生物技术发展潜力。t
