言语互动和模仿对于幼儿的语言学习和发展至关重要。然而,目前尚不清楚母子二元组如何在轮流言语互动中同步皮质层面的振荡神经活动。我们的研究调查了母子对在轮流言语模仿范式中的脑间同步。使用双 MEG(脑磁图)装置同时测量互动母子对的大脑活动。在社交互动和非互动任务(被动聆听纯音)之间比较了人际神经同步。与非互动条件相比,在 θ 和 alpha 波段,社交互动期间的脑间网络同步性有所提高。在下额回的右角回、右三角回和左岛叶部分观察到了增强的人际大脑同步性。此外,这些顶叶和额叶区域似乎是表现出大量脑间连接的皮质中枢。这些皮质区域可以作为言语社交交流中互动成分的神经标记。本研究首次使用双 MEG 装置研究母子在言语社交互动过程中的脑间神经同步。我们的研究结果加深了我们对母子二人组言语互动过程中轮流发言的理解,并表明社交“门控”在语言学习中发挥着作用。
像在路口转弯这样的交通状况注定会出现安全关键情况和事故。人为错误是这些情况下发生事故的主要原因之一。识别驾驶员转弯意图的模型可以通过在危险转弯操作之前警告驾驶员或停车来帮助减少事故。大多数旨在预测驾驶员转弯意图概率的模型仅使用上下文信息,例如间隙大小或等待时间。本研究的目的是调查上下文信息和大脑激活测量的结合是否能增强转弯意图的识别。我们进行了驾驶模拟器研究,同时使用高密度 fNIRS 测量大脑激活。在 fNIRS 和上下文数据上训练了转弯意图识别的神经网络模型。使用 SHAP(SHapley Additive exPlanations)特征重要性分析对输入变量进行了分析,以显示包含大脑激活数据的积极影响。模型评估和特征重要性分析都表明,上下文信息和大脑激活的结合可以改善转弯意图识别。 fNIRS 结果显示,在执行转弯之前的“转弯”决策阶段,左侧运动皮层部分(例如初级运动皮层 (PMC;假定的 BA 4)、运动前区 (PMA;假定的 BA 6) 和辅助运动区 (SMA;假定的 BA 8)的大脑激活差异有所增加。此外,我们还观察到左侧前额叶区域的激活差异有所增加,可能位于左侧中额叶回 (假定的 BA 9),这与决策和行动计划等执行功能的控制有关。我们假设大脑激活测量可能是一种更直接的指标,对转弯行为具有潜在的高特异性,从而有助于提高识别模型的性能。
功能连接是对大脑时时刻刻如何连接的动态描述。我们不要将其想象为网络中使用的物理线路,而是想象一下这些线路在一天中是如何使用的。当你在电脑上做作业时,你的笔记本电脑会将文档发送到你的打印机。当天晚些时候,你可能会使用笔记本电脑将电影传输到电视上。这些“线路”的使用方式取决于你是在工作还是在休息,对人类来说也是如此。功能连接会根据当前任务而变化。你的大脑一直在动态地重新连接。想象一下,你站在离墙上挂着的菜单板仅几步之遥的地方,阅读一份餐厅特色菜清单。无论何时你看着什么东西,视觉皮层都在工作,但由于你在阅读,所以视觉皮层与用于阅读的听觉皮层相连。你指着板上的某样东西,不小心把它从墙上碰掉了。当你伸手去接它时,你的大脑连接就会发生变化。你不再阅读,而是试图接住下落的物体,你的视觉皮层现在与运动前皮层协同工作来引导你的手。
转弯对动物至关重要,尤其是在捕食者期间 - 猎物相互作用并避免障碍。对于飞行动物,转弯由(i)飞行轨迹或行进路径的变化以及(ii)身体取向或3D角位置组成。只有通过调节与重力相关的空气动力来实现飞行的变化。鸟类如何相对于转弯时身体方向的变化来协调空气动力的产生,这是遵守鸟类操纵飞行中使用的控制策略的关键。我们假设鸽子相对于其身体沿均匀的方向产生空气动力,需要改变身体方向以重定向这些力转动。使用详细的3D运动学和身体质量分布,我们检查了缓慢飞行的鸽子(哥伦比亚利维亚)执行90°转弯的净空气动力和身体方向。即使鸟类的身体取向差异很大,在整个转弯的整个转弯中,下冲程上平均的净空气动力在固定的方向上也保持固定的方向。在回合的早期,身体方向的变化主要重定向下冲程空气动力,影响了鸟的飞行轨迹。接下来,鸽子主要重新征收前向飞行中使用的身体方向,而不会影响其飞行轨迹。令人惊讶的是,鸽子的上风产生的空气动力力量大约是下文中产生的空气动力的50%,几乎与嗡嗡声鸟产生的相对上行力相匹配。因此,鸽子通过使用全身旋转来改变空气动力产生的方向来改变其飞行轨迹,从而实现低速的情况。