分布式嵌入式能量转换器技术(DEEC-TEC)的域是一种新生且不充实的范式,用于收获和转换海洋可再生能源。该范式通过使用许多小型分布式嵌入式能量转换器(DEEC)来区分自身,最终通过创建“ DEEC-TEC超材料”来组装,从而创建了一个整体较大的结构,以收集和转化海洋可再生能源。举例来说,这种结构可能是海浪能转换器 - 一种能量转换器,其结构是由各种Deec-Tec超材料制成的,可以收获海浪能量并将其转换为更有用的东西,例如电力。到此目的,可以在三个不同级别的层次结构上查看DEEC-TEC:(1)单个分布式嵌入式能量转换器,也称为DEEC; (2)DEEC-TEC超材料 - 本质上,由许多DEEC互连制成的伪材料框架; (3)总体而言,由DEEC-TEC超材料制成的总体较大的可再生能源收获转换结构。
• Ultra low-power with high-efficiency DC-DC boost converter/charger – Continuous energy harvesting from low-input sources: V IN ≥ 130 mV (Typical) – Ultra-low quiescent current: I Q < 330 nA (Typical) – Cold-start voltage: V IN ≥ 600 mV (typical) • Programmable dynamic maximum power point tracking (MPPT) – Integrated dynamic maximum power point tracking for从各种能源来源(输入电压法规)的最佳能量提取阻止输入来源•存储•可以将能量存储到可充电可充电的锂离子电池,薄膜电池,薄膜电池,超级电容器,超级电容器或常规电容器,或常规电池电量•电池充电和保护型电池•可编程的电池良好的电池 - 拨号级别 - 拨号级别 - 计算机温度 - 拨号级别的温度 - 拨号级别的温度 - 拨号级别的温度 - 拨号级别的温度, PIN - 可编程阈值和磁滞 - 警告附有待处理功率损失的微控制器 - 可用于启用或禁用系统负载
和减少电源转换器的占地面积 [1,2]。正因为如此,一些制造商越来越多地开发基于 SiC 和 GaN 技术的电源转换器。光伏逆变器、电机驱动逆变器、不间断电源 (UPS) 和笔记本电脑充电器等应用是可用的商用 WBG 电源转换器的几个例子。几项研究 [1,2] 报告了 WBG 转换器在特定应用中的潜在节能效果。然而,这些调查是基于学术界开发的电源转换器,而不是商业产品,通常与行业标准和商业产品要求不兼容。在这项工作中,我们估计了几种应用中每年全球节能潜力,考虑用商用 WBG 替代实际的硅基商用电源转换器。这是第一项评估商用转换器能源潜力的研究,其结果与最先进的工业技术兼容。我们搜索了每个选定应用的制造商,以获得基于 WBG 系统的可用产品和相关技术信息。我们的分析提供了 WBG 系统的节能潜力。
《星球大战》(1977年)的Droid C-3PO引入了乘客的机器人调酒师(2016年),无数的科幻电影已经设想了一个具有人工智能(AI)的自动化,基于机器的程序(AI)能够对新颖的场景做出反应并提供真实生活的能力。这些科幻电影中的几部还包括提供医学指导的自动化程序,尤其是在没有活着的医学专家的情况下。随着AI的出现,我们正在接近某些AI框架可能使这一科幻概念成为更接近现实的时代。预计宇航员远离地球的空间探索,并且在较长的沟通延长的持续时间内,这些AI框架可以在地球上训练以提供实时答案。这种新兴技术可能有助于急性医疗紧急情况,尤其是在严峻而遥远的空间环境中。在本手稿中,我们概述了生成的预训练的变压器(GPT)技术,一种快速新兴的AI技术,以及这种技术对太空健康的影响,考虑因素和局限性。最近,Chatgpt(Open AI;美国加利福尼亚州旧金山)在2022年11月下旬引入后,迅速获得了受欢迎程度,这要归功于其彻底的回应和类似人类的写作技巧。1个CHAT GPT体系结构或大型语言模型(LLM)涉及一个变压器神经网络,该网络从深度学习技术,自然语言处理(NLP)和自我注意力中生成类似人类的文本
提高稳压输出效率的现有方法之一是提高开关速度,而不考虑负载变化。这些转换器主要集中于高频功率转换电路,使用高频开关和电感器、变压器和电容器将开关噪声平滑为稳压直流电压。然而,这种方法很难在电池供电的便携式设备中采用,因为以前的同步降压型电池充电器由于其最大效率限制而无法充分利用高输入功率。便携式电子产品设计师面临的挑战是如何在小尺寸内安装高效电池充电解决方案,充分利用高输入功率实现快速和低温充电。
摘要 动力输出装置 (PTO) 是波浪能转换不可或缺的一部分,其设计过程并非易事。更好的 PTO 以及为各种应用选择和设计 PTO 架构的更好流程将有利于帮助为蓝色经济提供动力的设备,因为它们可以减少在 PTO 设计上花费的时间和金钱,并提高这些设备的整体能量捕获性能。本文记录了小型浪涌型波浪能转换器 (WEC) 的 PTO 选择过程,旨在为未来的 PTO 选择过程提供参考。在 WEC-Sim 中评估了三种 PTO 架构:液压止回阀 PTO、液压主动阀 PTO 和直接电动 PTO。构建了每个 PTO 的简单模型。由于最初没有小型设备的模型,因此在大型设备上模拟 PTO。使用弗劳德缩放法缩小结果,并与直接模拟小规模模型的结果进行比较。由于这项工作尚处于设计阶段的早期,需要对 PTO 选项进行粗略研究,因此我们做出了严格的假设。具体而言,我们将研究控制的有效性以及能量转换的效率。但是,能量捕获只是考虑的一部分;在选择 PTO 时还需要考虑物流问题。例如,大型 WEC 的组件非常大且昂贵,因此定制 PTO 组件可能有意义,但小型 WEC 将从现成的可用性中受益,因为定制成本将是小规模部署总资本成本的很大一部分。潜水式现成组件对于液压 PTO 来说更容易采购。由于高效的控制、高效的能量转换以及海洋级组件的可用性,为这种小型浪涌型 WEC 选择了主动阀液压 PTO。
•贸易研究集中在主要配电系统(传输) - 建筑(径向,环,网状) - 功率类型(AC VS vs vs dc) - 电压:(600V - 6 kV) - 数据包含估计的质量转换器的质量转换器 +电缆•结果•结果 - 压望下降质量降低质量 - 较高的质量 - 尤其是在单个电压上•技术限制•技术•1。•技术•技术范围•技术••技术范围:5•技术 - •技术•1.限制•最大AC:无知
DAC8811 是一款单通道电流输出、16 位数模转换器 (DAC)。其架构如图 18 所示,是一种 R-2R 梯形配置,其中三个 MSB 分段。梯形的每个 2R 支路均可切换到 GND 或 I OUT 端子。通过使用外部 I/V 转换器运算放大器,DAC 的 I OUT 端子保持在虚拟 GND 电位。R-2R 梯形连接到外部参考输入 V REF,该输入决定 DAC 满量程电流。R-2R 梯形为 5k Ω ±25% 的外部参考提供与代码无关的负载阻抗。外部参考电压可在 -15 V 至 15 V 范围内变化,从而提供双极 I OUT 电流操作。通过使用外部 I/V 转换器和 DAC8811 R FB 电阻器,可以生成 -V REF 至 V REF 的输出电压范围。
DAC8811 是一款单通道电流输出、16 位数模转换器 (DAC)。其架构如图 18 所示,是一种 R-2R 梯形配置,其中三个 MSB 分段。梯形的每个 2R 支路均可切换到 GND 或 I OUT 端子。通过使用外部 I/V 转换器运算放大器,DAC 的 I OUT 端子保持在虚拟 GND 电位。R-2R 梯形连接到外部参考输入 V REF,该输入决定 DAC 满量程电流。R-2R 梯形为 5k Ω ±25% 的外部参考提供与代码无关的负载阻抗。外部参考电压可在 -15 V 至 15 V 范围内变化,从而提供双极 I OUT 电流操作。通过使用外部 I/V 转换器和 DAC8811 R FB 电阻器,可以生成 -V REF 至 V REF 的输出电压范围。
DAC8811 是单通道电流输出、16 位数模转换器 (DAC)。图 18 所示的架构是一种 R-2R 梯形配置,其中三个 MSB 分段。梯形的每个 2R 支路都可以切换到 GND 或 I OUT 端子。通过使用外部 I/V 转换器运算放大器,DAC 的 I OUT 端子保持在虚拟 GND 电位。R-2R 梯形连接到外部参考输入 V REF,该输入决定 DAC 满量程电流。R-2R 梯形对外部参考呈现 5k Ω ±25% 的代码独立负载阻抗。外部参考电压可以在 -15 V 至 15 V 的范围内变化,从而提供双极 I OUT 电流操作。通过使用外部 I/V 转换器和 DAC8811 R FB 电阻器,可以生成 -V REF 至 V REF 的输出电压范围。