能源转型正在推动以可再生能源系统为基础、结合能源储存系统或能源载体的当地能源社区的大规模传播,以实现对化石燃料的独立性并限制碳排放。事实上,可再生能源的可变性和间歇性使其不足以满足终端用户全天的电力需求;因此,研究能源储存系统,考虑到其季节性储存行为(例如,能源-电力耦合、自放电损失和最低充电状态),对于保证适当的能源覆盖至关重要。这项工作旨在确定由意大利中部一座 220 千瓦小型水力发电厂供电的当地能源社区的离网运行,使用电池储能系统或采用 Calliope 框架的氢能储能系统。结果表明,氢储存系统由 137 千瓦电解器、41 千瓦燃料电池和 5247 千克 H 2 储存器组成,而电池系统储存系统的容量为 280 兆瓦时。虽然电池存储具有更好的往返效率,但其自放电损耗和最低充电状态限制涉及斜率更陡的放电阶段,因此由于能量功率比高而需要大量的经济投资。
世界正在经历多维度的快速技术进步,但代价是环境可持续性。在这个不断发展的世界里,对能源的需求与日俱增。用于生产能源的自然资源,如化石燃料,由于被广泛用于满足这种不断增长的能源需求,正濒临灭绝。当今世界上大部分化石燃料燃烧的能量都用于持续生产饮用水、供暖、制冷应用和发电(Rupam 等人,2022a)。除了不可逆转的资源枯竭外,燃烧化石燃料还会导致温室气体和其他污染物的过量排放,从而导致全球变暖。考虑到气温上升的灾难性影响,近年来,全球迫切需要开发节能、环保的水生产、暖通空调应用、发电等系统。尽管可再生能源正在快速发展,但尚未达到令人满意的水平,即所有能源密集型系统都可以用它来运行。除此之外,可再生能源过度依赖环境约束。例如,在夜间或阴天,无法收获太阳能,或者光伏发电的能量转换率急剧下降。另一方面,当阳光充足时,太阳能光伏发电产生的能量超过当时所需的能量。大多数情况下,由于缺乏适当的能量存储或转换系统,这些剩余能量最终被浪费掉。在这方面,热能转换和存储系统由于其多方面的特点可以提供相当现实的替代方案。热能存储系统可以在有利条件下储存剩余能源,并在不利情况下以各种形式提供清洁且负担得起的能源,例如供暖、制冷、饮用水甚至发电。相反,热能转换系统可以为进一步增加可再生能源在能源结构中的份额铺平道路,并在未来的脱碳社会中发挥重要作用。在全球范围内,目前正在广泛研究各种热能存储和转换 (TESC) 技术。图 1 展示了与 TESC 这一广阔研究领域相关的一些最突出的技术。尽管 TESC 技术具有巨大的潜力,但它们的利用面临着与之相关的各种挑战。根据应用和工作条件,可能会出现某些障碍,为了克服这些障碍,需要科学和工程领域的共同努力。这项专业大挑战旨在解决主要缺点,并讨论克服与当前 TESC 技术相关的这些挑战的未来研究方向。
对提供空间供暖、制冷、生活热水和电力的太阳能冷热电联产 (S-CCHP) 系统进行了详细的“从摇篮到坟墓”的生命周期评估 (LCA),遵循两种不同的方法(ReCiPe 2016 Endpoint (H/A) v1.03 和碳足迹 IPCC 2013 100 年)。创新的 S-CCHP 系统目前正在位于西班牙萨拉戈萨的一座工业建筑中运行,开发的用于估算年能量产出的瞬态模型已经过验证。该系统由混合光伏热 (PV-T) 收集器组成,通过两个并联的储热罐与空气-水可逆热泵 (rev-HP) 集成。另一个贡献是,还对传统的 PV 系统和基于电网的系统进行了详细的 LCA 分析,即由电网供应的建筑用电量(基线配置)。结果表明,根据 ReCiPe 2016 Endpoint (H/A) 和 IPCC GWP 100a 方法,拟建的 S-CCHP 系统对环境的影响仅为电网系统的一半(分别为 4.48 kPts vs 8.87 kPts,82.4 吨二氧化碳当量 vs 166.9 吨二氧化碳当量)。光伏系统对环境的影响比电网系统小 30%。另一项新颖和贡献是进行敏感性分析,以评估系统寿命、太阳辐照度和发电结构(也称为电力结构)对 LCA 结果的影响。结果表明,在所有考虑的太阳辐照度水平和电力结构情景中,即使在低辐照度水平的气候条件或电力供应高度脱碳的国家,拟建的 S-CCHP 系统似乎是一种减少建筑物对环境影响的新兴替代方案。
自2016年以来,戴尔·技术(Dell Technologies)的全球转型办公室已与世界上150多家最大的企业合作进行了转型之旅。这些企业已要求戴尔技术(Dell Technologies)帮助他们采用云操作模型,使他们的IT组织能够以与公共云产品相同的灵活性和敏捷性行动,而成本的一小部分。我们已经开发了一种经过验证的方法,其中包括改变客户的工作量,云平台和基础架构以及IT操作模型,以更好地与降低其服务成本的业务成果更好地保持一致,从而提供更安全且有弹性的IT服务以及通过商业敏捷性释放创新的创新。在戴尔(Dell)的全球转型办公室内,我们开发了一项电信和边缘实践,它是IT和电信专家的专门团队,可帮助通信服务提供商(CSP)计划并执行从遗产,孤立的系统到端到端的电视云环境的转型,从而增强了功能(灵活性,敏捷性,agibition,Innovation and resienties resiention。有很多转换的理由,包括:
NYCHA迅速回应的一个关键例子是修正了租金困难方案,这项政策旨在解决突然的收入损失。在进行COVID之前,该政策依靠临时重新认证过程,该过程耗时耗时,居民经常需要房地产管理办公室中的住房助理提供人员援助。公共住房租赁管理团队和租赁住房部重新设计了面对自助门户的客户,以简化所需的信息并与信息技术一起使用,并与客户联络中心(CCC)一起创建一个脚本,以允许居民要求通过电话更改租金。从2020年4月到2020年7月,NYCHA处理了13,258租用艰苦的要求。这比同一时期的2019年要求增加了近450%。
介绍了季节性地下储能系统的最佳设计。本研究包括在 100 至 500 m 深度范围内使用天然结构的可能性。出于安全原因,考虑的储能流体是初始温度为 90 ◦ C 的水。使用收集到的土壤热性能数据进行了有限元法模拟。作为该方法的一个实际示例,对在西班牙阿维拉地区收集的数据进行了分析。使用在该区域测量的数据生成了温度-深度图。通过从地面进行的电磁场扩散技术获得了地下物质组成的 3D 模型。这允许分析可用的储能策略解决方案,这些解决方案根据现场的具体条件量身定制,具有足够的精度,无需进行深挖即可进行初步评估。本研究显示了交替的沙子和粘土区域,其中天然结构可在 500 m 深度范围内使用。考虑了水的热性能取决于温度和压力。各种尺寸配置表明,在圆柱形几何结构中,半径超过 2 米的存储系统在每单位质量存储的能量方面并不提供显著的优势。与被沙子包围然后在存储 6 个月后再被粘土包围的空腔相比,粘土包裹的优势显而易见。根据地下温度和运输存储液体所需的能量,结果表明,在 50 米到 100 米的深度之间,热性能并没有显著改善。然而,在 100 米到 200 米之间取得了明显的改善,从那里到 500 米,改善可以忽略不计。分析了几种用于容纳存储液体和用于热隔离的材料。对于超过 14 天的时间,热塑性塑料的热性能是相关的,如在模拟中表现出最佳性能的丙烯腈-苯乙烯-丙烯酸酯的情况。在最佳配置下,可以看到,通过将水储存在 90 ◦ C(在 1 月至 2 月期间与环境温度下的典型系统进行交换可获得 138.78 kJ/kg),与将水储存在地下温度 25 ◦ C(获得 77.08 kJ/kg)的情况相比,每公斤储水可以储存 1.8 倍的能量,而不会影响周围介质。最后,根据将流体温度从环境温度升高到初始储存温度 90 ◦ C 所需的输入能量,可以根据可能回收的热能计算出存储系统的效率。由于底土中粘土的热性能,先前的效率(𝜂 = 0。46 ) 报告称,含水层能量热能储存可以通过相对较小的储存量获得,而不需要像大多数季节性热能安排那样连续的能量入口,在储存腔的最佳条件下,有潜力回收 70% 的入口热能。
可再生能源在电网中的份额不断增加,需要存储技术来平衡能源供需。热集成泵送热能存储系统被认为是中型到大型存储应用的有前途的技术。其中,压缩热能存储已被众多理论研究确定为有前途的候选技术。尽管进行了这些研究,但迄今为止理论概念的可行性尚未通过实验得到证实。为了弥补这一差距,本出版物首次介绍了世界上第一个 CHESTER(可再生能源压缩热能存储)实验室原型的整个设置和实验结果,该原型具有代表性规模,包括高温热泵和有机朗肯循环,结合显热和新型双管潜热存储作为高温热能存储系统。展示了 10 kW 规模的完全集成 CHEST 系统的稳定运行,并确认了潜热存储单元作为冷凝器和蒸发器的稳定功能。目前的原型结合了三个首创的子系统,效率高达 37%。所呈现的结果证实了迄今为止理论概念的实际可行性,并为进一步优化组件以及更重要的是各个子系统之间的相互作用提供了指导。