介绍了季节性地下储能系统的最佳设计。本研究包括在 100 至 500 m 深度范围内使用天然结构的可能性。出于安全原因,考虑的储能流体是初始温度为 90 ◦ C 的水。使用收集到的土壤热性能数据进行了有限元法模拟。作为该方法的一个实际示例,对在西班牙阿维拉地区收集的数据进行了分析。使用在该区域测量的数据生成了温度-深度图。通过从地面进行的电磁场扩散技术获得了地下物质组成的 3D 模型。这允许分析可用的储能策略解决方案,这些解决方案根据现场的具体条件量身定制,具有足够的精度,无需进行深挖即可进行初步评估。本研究显示了交替的沙子和粘土区域,其中天然结构可在 500 m 深度范围内使用。考虑了水的热性能取决于温度和压力。各种尺寸配置表明,在圆柱形几何结构中,半径超过 2 米的存储系统在每单位质量存储的能量方面并不提供显著的优势。与被沙子包围然后在存储 6 个月后再被粘土包围的空腔相比,粘土包裹的优势显而易见。根据地下温度和运输存储液体所需的能量,结果表明,在 50 米到 100 米的深度之间,热性能并没有显著改善。然而,在 100 米到 200 米之间取得了明显的改善,从那里到 500 米,改善可以忽略不计。分析了几种用于容纳存储液体和用于热隔离的材料。对于超过 14 天的时间,热塑性塑料的热性能是相关的,如在模拟中表现出最佳性能的丙烯腈-苯乙烯-丙烯酸酯的情况。在最佳配置下,可以看到,通过将水储存在 90 ◦ C(在 1 月至 2 月期间与环境温度下的典型系统进行交换可获得 138.78 kJ/kg),与将水储存在地下温度 25 ◦ C(获得 77.08 kJ/kg)的情况相比,每公斤储水可以储存 1.8 倍的能量,而不会影响周围介质。最后,根据将流体温度从环境温度升高到初始储存温度 90 ◦ C 所需的输入能量,可以根据可能回收的热能计算出存储系统的效率。由于底土中粘土的热性能,先前的效率(𝜂 = 0。46 ) 报告称,含水层能量热能储存可以通过相对较小的储存量获得,而不需要像大多数季节性热能安排那样连续的能量入口,在储存腔的最佳条件下,有潜力回收 70% 的入口热能。
主要关键词