由于固有的波动,风能整合到大规模的网格中会带来不稳定和其他安全风险。在本研究中,提出了使用多代理深钢筋学习,风力涡轮机(WT)的新协调控制策略和混合动力储能系统(HESS)是为了进行风能平滑的目的,其中HESS与转子动能和风力涡轮机的旋翼动能结合在一起。首先,通过自适应变化模式分解(VMD)预测风力发电量并分解为高,中和低频组件。然后,通过多代理双层列表深层确定性策略梯度算法(MATD3)进行高频和中频的参考功率的最佳二级分配,以平滑功率输出。为了提高学习的勘探能力,将一种新型的α-状态lévy噪声注入了MATD3的动作空间,并动态调节了噪声。模拟和RT-LAB半物理实时实验结果表明,提出的控制策略可以合理地充分利用WT和HESS组合生成系统的平滑输出功率,延长储能元件的寿命并降低WT的磨损。
传动系统:主轴承1和主轴承2之间的轴长度,从集线器法兰到主轴承的轴长度,高速轴长度,枢纽直径,低速 - 轴直径,低速轴壁厚,高速厚度,高速轴直径,高速轴壁板,床单厚度,床单厚度,床单厚度,底板越差异
风力涡轮机的材料 材料的重要性在当今生产的许多机器和车辆中得到了充分的认可。材料的质量和性能在风力涡轮机中非常重要。随着近年来材料技术的快速发展,市场竞争也愈演愈烈。风力涡轮机中使用的叶片的空气动力学和耐久性对其效率都非常重要。今天,很明显,最适合机翼的材料是复合材料。然而,在选择复合材料时也要考虑许多标准。例如,经济性、性能特性、价值分析、损伤分析和效益分析。 复合材料 这些是通过以不同的方式(颗粒状、层状等)组合具有不同性质的材料而获得的。复合材料的主要目的是通过组合这些特性来组合那些不能提供所有所需特性(强度、抗老化性、断裂韧性、热性能、重量等)的材料。玻璃增强塑料是风力涡轮机领域转子机翼结构中最常用的复合材料。事实上,碳纤维复合材料的性能增加了更高的价值,但其高成本是其最大的缺点。结论风能是非常有用的清洁能源。它们有一些小问题,但这不是什么大问题。海洋和大洋的四面都有良好的风能潜力。人类也可以在海洋和大洋中间建造风力涡轮机。因此,我们可以从海洋和大洋中获得大量能源。技术总是在进步。清洁和可再生能源系统将支持我们保护地球。参考文献:
摘要。微电网被视为建筑物中各种分布式能源整合的关键要素。它们能够在并网和孤岛模式下运行,并在吸收可再生能源方面表现出巨大的潜力。然而,间歇性可再生能源的广泛实施,再加上可变电价,大大增加了微电网运行的不确定性。本文分析了一个综合能源系统的运行策略,该系统包括微型燃气轮机、地源热泵、光伏板,旨在满足商业建筑的供暖和电力需求。为了促进这一努力,开发了一个微型燃气轮机的神经网络模型,重点是快速计算时间和高精度地捕捉非设计性能。此外,使用 Modelica 语言开发和验证了地源热泵、光伏板的数学模型。使用 Dymola 优化包来推导系统的日前调度和一小时间隔,目的是最大限度地降低与系统相关的电力和供暖成本。结果表明,在分析期间,总成本可以降低约 51%,这表明在系统运行中节省成本的途径很有希望。
摘要:本文回顾了材料选择和设计在确保以氨-氢为燃料的燃气涡轮发动机高效性能和安全运行方面的关键作用。由于这些能源燃料在涡轮燃烧室中表现出独特的燃烧特性,因此确定合适的材料势在必行。详细的材料特性对于辨别涡轮部件中的缺陷和退化途径是必不可少的,从而照亮改进的途径。随着涡轮入口温度的升高,热降解和机械缺陷的敏感性增加,尤其是在高压涡轮叶片中,这是决定寿命的关键部件。本综述重点介绍了氨-氢燃料涡轮设计中的挑战,解决了氨腐蚀、氢脆和应力腐蚀开裂等问题。为了确保发动机的安全性和效率,本文提倡在材料开发和风险评估中利用先进的分析技术,强调技术进步、设备规格、操作标准和分析方法之间的相互作用。
摘要。泵送的水电存储(PHES)技术自1890年代初以来一直使用,如今,是一种合并和商业成熟的技术。PHES系统允许通过将水从低层储存到更高级别的储层来存储。随后,可以通过放置在连接两个储层的甲板上的涡轮机释放这种能量,以产生能量。尽管这些植物历史上已经在大功率尺度上使用(按数百兆瓦的顺序使用),但近年来,由于它们有可能与自主岛网格中使用的可再生能源系统(RES)整合在一起,因此微型和小型植物变得越来越有趣。与PHES系统中使用的液压机相关的资本成本代表了最关键的经济因素,可以通过在反向模式下(泵作为涡轮机,pats)代替小型水电涡轮机来减轻这种因素。在每个特定案例研究中必须权衡这些预期的经济利益,其中一些缺点与使用PAT相关,这主要与特定设计的泵和涡轮机相对于较低的圆形旅行效率而言。在这项工作中,已经研究了一个小规模的PHES工厂与存在的光伏系统,以在意大利南部一个小岛的电网中进行整合。根据技术经济的考虑,已经比较了两个不同的PHE大纲。前者是由泵和涡轮机组成的典型PHES系统,而后者仅使用一系列平行泵,这些泵也可以在反向模式下工作。分析证明了整合光伏和PHES工厂的可行性,这会导致电力生产成本较低,而PAT基于PAT的轮廓结果的PHES性能则受PAT相对于液压涡轮机的较低效率而受到惩罚。
• $8B for at least four regional clean hydrogen hubs • $1B for electrolysis research, development and demonstration • $500M for clean hydrogen technology manufacturing and recycling R&D • Aligns with Hydrogen Shot priorities by directing work to reduce the cost of clean hydrogen to $2 per kilogram by 2026 • Requires developing a National Hydrogen Strategy and Roadmap President Biden Signs the Bipartisan Infrastructure Bill on 2021年11月15日。照片来源:肯尼·霍尔斯顿/盖蒂图像
摘要。本文分析了浮动平台和风力涡轮机转子的耦合动力学。特别是,阻尼是从转子和浮动平台的耦合方程中显式推导出来的。阻尼的分析导致了对不稳定性现象的研究,从而获得了导致非最小相位零点 (NMPZ) 的显式条件。分析了两个 NMPZ,一个与转子动力学有关,另一个与平台俯仰动力学有关。后者引入了一个新颖性,本文提供了一个显式条件来验证它。在本文的第二部分,从浮动平台阻尼的分析出发,提出了一种控制浮动海上风力涡轮机 (FOWT) 的新策略。该策略允许在平台俯仰运动中对控制器施加显式阻尼水平,该阻尼水平可适应风速和运行条件,而无需改变平台俯仰周期。最后,通过对参考 FOWT 进行气动-液压-伺服-弹性数值模拟,将新策略与无补偿策略和非自适应补偿策略进行比较。比较了产生的功率、运动、叶片螺距和塔基疲劳,表明新控制策略可以减少结构疲劳而不影响发电量。
本作品是作为美国政府机构赞助工作的记录而编写的。美国政府及其任何机构、其任何雇员、其任何承包商、分包商或其雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用的结果做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构、其承包商或分包商的观点和意见。
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023