电力系统稳定性考虑因素 – 定义 – 稳定性分类 – 转子角和电压稳定性 – 同步机表示 – 经典模型 – 负荷建模概念 – 励磁系统建模 – 原动机建模。暂态稳定性 – 摆动方程 – 等面积准则 – 摆动方程的解 – 数值方法 – 欧拉方法 – 龙格-库特方法 – 临界清除时间和角度 – 励磁系统和调速器的影响 – 多机稳定性 – 扩展等面积准则 – 暂态能量函数方法。小信号稳定性 – 状态空间表示 – 特征值 – 模态矩阵 – 单机无限母线系统的小信号稳定性 – 同步机经典模型表示 – 场电路动力学的影响 – 励磁系统的影响 – 多机系统的小信号稳定性。电压稳定性 – 发电方面 - 输电系统方面 – 负荷方面 – PV 曲线 – QV 曲线 – PQ 曲线 – 静态负荷分析 – 负荷能力极限 - 灵敏度分析 - 连续功率流分析 - 不稳定机制 - 示例。提高稳定性的方法 – 暂态稳定性增强 – 高速故障清除 – 蒸汽轮机快速阀门 - 高速励磁系统 - 小信号稳定性增强 - 电力系统稳定器 – 电压稳定性增强 – 无功功率控制。
简介 1884 年,查尔斯·帕森斯爵士开发了世界上第一台真正强大的蒸汽涡轮机 - 一种新型发动机,在最大功率输出、效率、可靠性和在任何地方提供任意功率的自由度方面,它有可能取代无处不在的往复式蒸汽机。与此同时,他还开发了一种可以承受涡轮机高速运转的发电机。这使他能够设计和制造世界上第一台蒸汽涡轮发电机,这种机器可以实现大规模发电,从而使电力变得既负担得起又人人可用。在他发明第一台蒸汽涡轮机十年后,他开发了世界上第一艘成功的涡轮驱动船 Turbinia,随后蒸汽涡轮机成为需要高功率和/或高速度的船舶的主要发动机类型。关于查尔斯爵士的公司和所制造机器的故事只在 1931 年(查尔斯爵士去世的那一年)才被讲述。主要参考文献是 Richardson 1911 [1]、Appleyard 1933 [2]、RH Parsons 1936 [3] 和 Scaife 2000 [4]。这个故事从未在任何地方完整地讲述过。目前正在进行尽可能完整地记录历史的工作。本文摘录自该作品,重点介绍了 Parsons 陆地蒸汽轮机从 1884 年到 1997 年的发展,当时母公司 CA Parsons & Co Ltd 成为西门子的一部分。出于必要,为了获得合理的纸张大小,这里将仅介绍技术最先进的机器,尽管这意味着以下页面仍包含大量信息。
页码摘要................................................................................................................ III 致谢...................................................................................................................... VII 目录...................................................................................................................... VIII 图表列表......................................................................................................................... IX 表格列表......................................................................................................................... X 附录列表......................................................................................................................... X 缩写列表......................................................................................................................... XI 第 1 章简介 ............................................................................................. 1 第 2 章背景 ............................................................................................. 3 2.1.温室气体排放 ............................................................................................. 3 2.2.蒸汽轮机的类型 ............................................................................................. 4 2.3.蒸汽冷凝器的功能 ............................................................................................. 4 2.4.空气抽取系统的功能 ................................................................................ 7 2.5.空气和 NC 气体对冷凝器的影响 ................................................................ 8 2.6.Loy Yang ‘B’ 发电站的蒸汽冷凝器...................................................... 9 2.7.Loy Yang ‘B’ 发电站的空气抽取系统 ...................................................... 14 2.7.1.系统布置.................................................................................... 14 2.7.2.操作模式.................................................................................... 15 2.7.3.操作条件范围.................................................................................... 16 2.7.4.LYB 空气抽取系统性能数据............................................................. 18 2.8.Loy Yang ‘B’ 发电站锅炉水化学 ...................................................... 19 第 3 章。文献综述 ...................................................................................... 21 3.1.液环真空泵 (LRVP) 系统...................................................... 22 3.1.3.空气提取设备的类型................................................................................ 21 3.1.1.蒸汽喷射系统............................................................................... 21 3.1.2.空气喷射器和 LRVP 系统................................................................ 25 3.1.4.蒸汽混合系统............................................................................... 25 3.1.5.其他空气提取设备....................................................................... 26 3.2.空气提取系统的正确尺寸............................................................................. 27 3.3.空气提取系统的效率............................................................................. 31 3.4.冷凝器性能和冷凝水过冷度....................................................... 35 第 4 章当前系统评估........................................................................ 39 4.1.LYB 冷凝器空气泄漏率............................................................... 39 4.2.LYB 当前系统能耗....................................................................... 45 4.3.LYB 当前系统效率....................................................................... 46 第 5 章新系统评估.................................................................... 47 5.1.空气提取的替代设计.................................................................... 47 5.2.新系统布置.................................................................................... 49 5.3.设计抽气率...................................................................................... 52
生物质量到电动或通过功率对X化学可以是可变可再生能力较高渗透的未来电网的潜在灵活性。但是,由于年度运营时间较低,生物质量到电动性不会经常派遣,并且在经济上变得不那么经济。可以通过通过“可逆”固体氧化细胞堆积整合生物质到电力和 - 化学化来解决此问题,从而形成三模式电网平衡植物,该植物可以在发电,电源存储和电力中性(具有化学生产)模式之间灵活切换。本文考虑了不同的技术组合和多个目标功能以获得各种设计替代方案,研究了这种植物概念的最佳设计。结果表明,提高的植物效率将增加给定生物质饲料所需的总细胞面积。不同技术组合之间具有相同气化器类型的效率差异小于5%。发电模式的效率最高可达到50%–60%,电源存储模式为72%–76%,功率中性模式为47%–55%。惩罚未在堆栈中转换的合伙人时,最佳植物设计与有限范围内的电气和气电网相互作用。蒸汽轮机网络可以恢复0.21-0.24 kW的每千瓦干燥生物质能(较低的加热值),这对应于效率提高高达20%。在不同模式下传递的热量的差异挑战了公共热交换网络的设计。
•高级超敏化(AUSC)组件测试联盟:FE支持AUSC组件测试联盟,这是DOE,俄亥俄州煤炭开发办公室和行业合作伙伴的15年努力。该财团正在努力开发用于AUSC燃煤电厂的锅炉和蒸汽轮机的材料。材料的开发,包括重大的制造试验,重点是基于镍的合金,用于与760°C蒸汽循环条件一致的温度。•极端机构项目:该项目通过利用DOE国家实验室内的无与伦比的计算和实验材料科学专业知识和能力来解决建筑挑战的材料,成为一支旨在改善热能合金并改善现有和未来的化石能源能力的综合材料的综合团队。fe和Netl领导着合作伙伴实验室的财团。有关更多信息,请单击此处或访问edx.netl.doe.gov/extrememat/。•跨口衣材料研发:该计划还参与了与DOE和英国商业,能源和工业策略在化石能源技术方面的多年合作,并非常重视材料。合作伙伴关系的目的是共享和发展高温化石能源电厂应用的高温材料的知识和专业知识。有关更多信息,请单击此处或访问possil.energy.gov/usuk/。•材料的高性能计算(HPC4MTLS)程序:HPC4MTLS程序是DOE能源创新计划高性能计算的一部分。HPC4MTL通过使能源技术的访问能够获得DOE实验室的计算能力和专业知识,从而加快了行业发现,设计和开发能源技术中的材料。有关更多信息,请单击此处或访问hpc4mtls.llnl.gov/。•Supergitical Co 2飞行员合金项目:该飞行员项目证明了镍超合金(Inconel 740和Haynes H282)的易用性,可施加性,
摘要:能源系统向 100% 可再生能源 (RES) 转型的趋势正在开始显现其影响,并越来越受到人们的接受。在这种情况下,大型光伏和风力发电厂将发挥主导作用。同时,随着电力运输、热泵和电转气技术的日益普及,能源消费的电气化预计将进一步发展。RES 的不可完全预测性是其众所周知的缺点,考虑到能源转型,它将需要使用储能技术,特别是大规模的电能到化学转化和化学能到电能的再转化。尽管如此,在这种情景下,关于中小型 CCHP 技术的潜在作用的分析文献还很少。因此,本文的目的是探讨在上述情景下,由废热驱动的热电联产 (CHP) 和/或冷热电联产 (CCHP) 技术可能发挥的作用。首先,本文对可能由低温余热源供电的中小型热电联产技术进行了回顾。然后,对拉彭兰塔理工大学研究人员研究的 100% 可再生能源情景进行了回顾(通过所谓的“LUT 模型”),以确定可以为中小型热电联产技术供电的潜在低温余热源。其次,通过从双方收集的交叉数据,介绍了上述余热源和所回顾的热电联产技术之间的一些可能的相互作用。结果表明,最适合所选热电联产技术的余热源是与燃气轮机(热回收蒸汽发生器)、蒸汽轮机和内燃机相关的余热源。还进行了初步的经济分析,结果表明,在电力和热力生产方面,所考虑的热电联产技术每单位安装千瓦的潜在年节约额分别可达 255.00 欧元和 207.00 欧元。最后,讨论了 100% 可再生能源情景中热电联产/冷电联产集成的碳足迹前景。
1级级别2级别3完整代码描述代码描述代码说明01太阳能00未指定00未指定1 T010000 01光伏00未指定的T010100 01经典硅T0101101 02薄膜薄膜T010102 02浓度T0102 02浓度00 UNSIFIED T010200 02 WIND 002 WIND 002 WIND 002 WIND 002 WIND 0000 002 WIND 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 002 T020001 02海上T020002 03水电头安装00未指定的00未指定的T030000 01摩托车头安装00未指定的T030100 02存储头安装安装00未指定的T030200 t030200 03纯泵存储头安装0003纯puped topeced Heactified 00 00 00 00044. T030400 04海洋00未指定的00未指定的T040000 01潮汐00未指定的T040100 01陆上T040101 02海上T040102 02 Wave Wave Wave Wave Wave 00 Unspeciped T040200 T040200 01 Onshore T040201020202202020222202022222022202222202022220202022220220220202202023ION30202202020202020202020220202020202020202号 04 Pressure 00 Unspecified T040400 05 Thermal 00 Unspecified 00 Unspecified T050000 01 Combined cycle gas turbine with heat recovery 00 Unspecified T050100 01 Non-CHP T050101 02 CHP T050102 02 Steam turbine with back-pressure turbine (open cycle) 00 Unspecified T050200 01 Non-CHP T050201 02 CHP T050202 03带冷凝涡轮机的蒸汽轮机(封闭循环)00未指定的T050300
值得〜孟买150亿印度卢比; 2021年9月30日:斯特林和威尔逊太阳能有限公司(SWSL/ Company)(BSE SCRIP代码:542760; NSE符号:SWSolar)是世界领先的太阳能EPC和O&M解决方案提供商之一,宣布,它因其浪费至领先的能源而获得的第一阶价值〜INR 1,500千万卢比,从而获得了1,500千万卢比的能源。上个月,该公司宣布扩展其可再生能源产品,包括混合能源,储能和废物到能源解决方案。该设施将每小时处理23.2吨不可回收的固体垃圾,每年转移超过185,600吨的废物。该设施将产生约19.6兆瓦的能源,足以为超过30,000户家庭供电,还将提供附近企业可以使用的热量。全球首席执行官,斯特林和威尔逊太阳能集团(Wilson Solar Group)表示:“我们很高兴能在最近涉足的废物到能量领域中获得第一笔订单。这是一个双重的喜悦,因为它也是我们在欧洲市场上的第一阶,进一步巩固了我们作为EPC领域最受信任的合作伙伴的地位。由于废物到能量项目的执行期限较大,因此该公司将能够同比管理一致的收入流。” “就可持续性和可再生能源发电而言,这是该地区的重要项目。每年在全球产生的超过20亿吨的市政废物,否则可从垃圾填埋场发射甲烷的非回收垃圾的处理将有助于减少大气中的温室气体。”该项目的工作范围包括设计,工程,采购,建筑,调试和测试设施,锅炉(燃料 - 拒绝衍生燃料),19 MWE蒸汽轮机发电机和冷凝器,污染控制设备,水处理厂,相关的工厂平衡以及随后的O&M。施工将于第3FY22季度开始,并将花费三年以上的时间才能委托。
电信系统研究所伊戈尔·西科斯基基辅理工学院,乌克兰基辅背景。在监测旋转机器(尤其是重型机器)的振动时,传感器电缆经常会出现问题。这些电缆通常很长、很重且容易损坏。目的。本文的目的是基于 MEMS 加速度计开发一种没有这些问题的无线振动传感器。开发的传感器应提供低功耗、至少在 10…1000 Hz 范围内的线性频率响应、计算振动 RMS 并在此基础上检测机器状况。方法。开发基于 8 位 MCU 的无线传感器设计。开发基于频谱分析的 MEMS 频率响应校正方法。将开发的传感器与工业压电传感器进行比较。结果。开发的传感器可代替工业压电振动传感器。此外,基于 MEMS 的传感器允许将基本的机器状态检测过程从高级系统转移到传感器级。这反过来又允许减少网络流量并简化整个状态监测系统。结论。开发了用于状态监测的基于 MEMS 的无线振动传感器。进行的测试表明,所开发的传感器性能良好,其精度可与工业压电传感器相媲美。关键词:振动;MEMS 加速度计;无线振动传感器;Wi-Fi;旋转机械监测。1. 简介在重型机械(蒸汽轮机、发电机、造纸机)的状态监测系统中,传感器的连接是一个问题。目前不使用具有电荷输出的传统压电加速度计,因为它们的电缆长度(通过电缆容量)甚至电缆安装(由于摩擦电噪声)都会影响传感器的输出信号。具有 ICP 输出的加速度计不受传统加速度计的限制,但在重型机器上安装这些传感器时需要使用数十米长的屏蔽电缆。由于长度和重量,使用这种电缆不方便。此外,人员在机器维护过程中经常会损坏长电缆及其连接器。解决该问题的一个可能方法是使用无线通信传输测量的振动数据。但是,带有无线发射器和 ICP 传感器的测量模块需要大功率电源才能确保其运行。因此,必须考虑使用基于微机电系统 (MEMS) 加速度计的传感器,以便为状态监测和诊断系统提供小型、低功耗的替代方案,以取代传统的工业测量系统。除了质量小、功耗低之外,基于 MEMS 的传感器将比工业传感器便宜得多,从而能够使用状态监测系统
主题:为工业 4.0 业务选择技术合作伙伴 1) 简介:此意向书 (EoI) 寻求愿意通过长期技术合作协议 (TCA) 与 Bharat Heavy Electricals Limited (BHEL) 合作的印度 IT 巨头的回应,以使 BHEL 能够为各个业务部门进行工业 4.0 解决方案的设计、开发、定制、测试和实施。发电厂、加工厂、输配电系统、国防、移动性和其他应用,如工厂自动化等。BHEL 是一家领先的国有企业,印度政府持有其 63.17% 的股权。BHEL 是一家综合发电厂设备制造商,也是印度最大的同类工程和制造企业,服务于印度经济的核心基础设施部门,即能源、交通、重型工程行业、可再生和非传统能源以及国防。BHEL 从事该行业已有 55 多年,其提供的电力设备占印度总火力发电量的 57% 以上。BHEL 还在印度证券交易所上市。该公司拥有 16 个制造部门、4 个电力部门区域、8 个服务中心、1 个海外办事处和 15 个地区办事处,此外还有遍布印度和海外的众多项目现场。BHEL 2019-20 年的年营业额约为 30 亿美元*。BHEL 拥有约 33,000 名高技能和敬业的员工,最先进的制造设施和实践以及最新技术,帮助 BHEL 保持了稳定的业绩记录。为了将领先的国有企业定位为全球工业巨头,以表彰其出色的表现,印度政府于 2013 年将 BHEL 归类为“Maharatna 公司”,赋予该公司更大的决策自主权。凭借目前超过 140 亿美元*的订单,BHEL 有望实现出色的未来增长。有关 BHEL 整个产品和运营的更多详细信息,请访问我们的网站 http://www.bhel.com 。我们正在进行的主要技术合作包括与德国西门子(蒸汽轮机、发电机和冷凝器)、日本三菱重工(泵)、日本 MPL(烟气脱硫系统)、美国 Vogt Power International(余热锅炉)、印度空间研究组织 (ISRO)(航天级锂离子电池)、韩国 NANO Company Ltd.(SCR 催化剂)、韩国 HLB Power Company Ltd.(闸门和挡板)、日本川崎重工(地铁不锈钢车厢)、芬兰 Valmet Automation Oy(DCS 系统)和美国 Babcock Power Environmental Inc.(选择性催化还原系统)达成的协议。