为了充分理解基因功能,在某个时候,有必要研究完整生物体的影响。在1980年代后期创造了第一只淘汰老鼠的创建引起了整合生理学领域的革命,这种革命一直持续到今天。在选择遗传修饰策略时,有许多复杂的选择,其中一些将在本综述中涉及,但主要重点是突出由于体内心脏表型的解释而引起的潜在问题和陷阱。作为典范,我们将仔细检查心脏能量学领域,并尝试了解肌酸激酶(CK)能量缓冲和运输系统在完整生物体中的作用。这个故事强调了遗传背景,性别和年龄的混杂影响,以及根据滥交蛋白和代谢冗余而解释淘汰模型的困难。它将考虑转基因过表达的剂量依赖性效应和意外后果,以及在体内表型技术的背景下需要进行实验性严格的结果。本次审查不仅将使心脏能量学领域具有清晰度,而且还将帮助非专家评估和批判性地评估由体内遗传修饰引起的数据。
3D元素掺杂剂。因此,由于存在无量化边缘状态而导致的量子反转对称性可能会导致量子异常效应(qahe)的检测。[10–12]预计此类设备与常规超导体的组合可以容纳Majorana Fermions,这些设备适用于用于拓扑量子计算机的编织设备。[13,14]由于真实材料的频带结构很复杂,因此在较高温度下实现Qahe或Majoraana fermions是一项挑战。需要高度精确的频带结构工程来有效抑制散装带的贡献。迄今为止,这构成了基于Qahe开发实用设备的主要限制障碍之一。因此,不可避免的是对TI的频带结构的更深入的了解。shubnikov – de Hass(SDH)振荡是一种通常在干净的金属中观察到的量子相干性,其中电荷载体可以在没有杂志的网络下完成至少一个完全的回旋运动而无需杂物散射。[15]可以从振荡期和温度依赖性振幅变化中提取诸如费米表面拓扑和无均值路径之类的财富参数。[16]量子振荡已被广泛用作研究高温超导体和拓扑材料的工具。[17–20]最近观察到ZRTE 5中三维(3D)量子霍尔效应(QHE)的观察吸引了进一步的热情研究ti Mate的量子振荡。[24,27]但是,未观察到远程FM顺序。[21]在二进制化合物,BI 2 SE 3,BI 2 TE 3和SB 2 TE 3散装晶体和薄片中观察到了量子振荡。[22–25]在这些系统中,振荡起源于表面状态或散装带,具体取决于化学电位的位置。[26]最近,在掺杂的Ti单晶的3D元素中发现了量子振荡,例如Fe掺杂的SB 2 TE 3和V掺杂(BI,SN,SB)2(TE,S)3。结果促使制备相似材料的薄膜,并具有与高迁移率拓扑表面状态共存的FM顺序的潜力。到目前为止,据我们所知,只有少数报道观察到磁掺杂的TI中的量子振荡,例如V型(BI,SB)2 TE 3,Sm-Doped Bi 2 Se 3。[28,29]但是,
(1) R. Gómez-Bombarelli, J.N.魏,D. Duvenaud,J.M.Hernandez-Lobato、B. Sanchez-Lengeling、D. Sheberla、J. Aguilera-Iparraguirre、T.D.希泽尔 R.P.亚当斯和 A.Aspuru-Guzik.,“使用数据驱动的分子连续表示进行自动化学设计”,ACS Central Science,卷。4,没有。2,第268-276,2018 年 2 月。(2) T.Guo, D.J.Lohan 和 J.T.Allisony,“使用变分自动编码器和风格迁移进行拓扑优化的间接设计表示”,AIAA 2018-0804。https://doi.org/10.2514 / 6.2018-0804,2018年。(3) S. Oh、Y. Jung、S. Kim、I. Lee 和 N. Kang,“深度生成设计:拓扑优化与生成模型的集成,”J.机械设计,卷。141,号。11, 111405, 2019.(4) 五十岚一,伊藤桂一,《人工知能(AI)技术と电磁気学を用いた最适设计[I]──トポロジー最适化──,》信学志,卷.105,没有。1. 页2022 年 33-38 日。(5) H. Sasaki 和 H. Igarashi,“深度学习加速拓扑优化”,IEEE Trans。Magn.,卷。55,没有。6,7401305,2019。(6) J. Asanuma、S. Doi 和 H. Igarashi,“通过深度学习进行迁移学习:应用于电动机拓扑优化, ” IEEE Trans.Magn., 卷。56, no.3, 7512404, 2020.(7 ) T. Aoyagi、Y. Otomo、H. Igarashi1、H. Sasaki、Y. Hidaka 和 H. Arita,“使用深度学习进行拓扑优化预测电流相关电机扭矩特性”,将在 COMPUMAG2021 上发表。(8) R.R.Selvaraju、M. Cogswell、A. Das、R. Vedantam、D. Parikh 和 D. Batra,“Grad-CAM:来自深层的视觉解释网络通过基于梯度的定位,” Proc.IEEE Int.Conf.计算机视觉 ( ICCV ),第< div> 618-626,2017 年。(9) H. Sasaki、Y. Hidaka 和 H. Igarashi,“用于电动机设计的可解释深度神经网络”,IEEE Trans。Magn.,卷57,号6,8203504,2021。(10) X.Y.Kou,G.T.Parks,和 S.T.< div> Tana,“功能优化设计
本研究はJSPS 科研费(JP 21H05021, JP 17H06227)、JST CREST(JPMJCR18J1)、JST SICORP
超材料,源于希腊语“meta”,意为“超越”,是一种具有独特属性和能力的人造材料。其显著特征在于其结构,由重复的晶胞组成。这些材料的属性主要由晶胞的几何形状而非材料成分决定,在天然材料中并不存在。主动超材料是超材料的一个子类别,其晶胞能够响应外部触发或刺激而改变其几何形状,从而相应地改变其属性。通过操纵这些刺激,主动超材料展现出可调节属性的卓越能力,从而显著增强其功能性和适用性。在众多不同类型的主动超材料中,磁机械超材料通过应用外部磁场(一种快速、可逆且不受束缚的驱动方法)具有独特的形状重构和属性调节优势。图 1(a) 展示了磁机械超材料的一般机制。通常,磁机械超材料的晶胞部分具有专门设计的磁化方向。当受到外部磁场(通常由永磁体或电磁线圈产生)时,磁机械超材料的磁化部分会经历磁扭矩,从而导致形状转变为致动模式。该过程是可逆的,在移除磁场后,或者在某些情况下施加反向磁场后,磁机械超材料会恢复到其初始模式。此外,制造磁机械超材料有两种策略。第一种选择是将磁性粒子嵌入软聚合物材料中,形成磁性软复合材料 [2、3],第二种选择是插入永久刚性磁体
摘要:人工智能 (AI) 被定位为大多数工业领域、社会互动以及许多其他技术优势的基础技术。人工智能正在迅速发展,有望改善我们的业务、保护我们的安全并使我们社会变得更好。与此同时,我们知道会存在一些担忧,其中一些是预料之中的,而许多担忧将随着技术本身的发展而发展。其无处不在的性质和快速的发展速度使传统的治理结构难以实施。但是,有许多“软法”或非法律约束力的工具提供了安全地促进创新所需的灵活性。引用:Gary Marchant、Lucille Tournas 和 Carlos Ignacio Gutierrez,通过软法管理新兴技术:人工智能的经验教训——导论,61 J URIMETRICS J. 1–18 (2020)。
I. 引言 现代问题通常涉及复杂、不确定和动态的环境。传统的计算方法依赖于精确的输入和确定性过程,而这些对于现实世界的问题并不总是可行的。人工智能 (AI) 在数据驱动的任务中表现出色,而软计算则提供了处理模糊性和不完整信息的强大工具。本文研究了结合人工智能和软计算优势的混合方法。这些系统在同时需要严格精度和适应性的场景中特别有用。 背景 人工智能专注于通过机器学习、自然语言处理和机器人技术复制人类智能。当提供结构化数据和预定义规则时,它在模式识别和决策等任务中表现出色。软计算涉及模糊逻辑、神经网络和遗传算法等方法,所有这些方法都优先考虑近似推理和学习,而不是严格的基于规则的系统。这些技术对于具有不确定性或模糊性的问题很有价值。